Does Reproductive Success in Orchids Affect the Evolution of Their Number of Flowers?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39861557
PubMed Central
PMC11769306
DOI
10.3390/plants14020204
PII: plants14020204
Knihovny.cz E-zdroje
- Klíčová slova
- fitness, model, orchid, reproductive success,
- Publikační typ
- časopisecké články MeSH
Species are disappearing worldwide, and changes in climate and land use are commonly assumed to be the most important causes. Organisms are counteracting the negative effects of environmental factors on their survival by evolving various defence strategies, which positively affect their fitness. Here, the question addressed is: can evolution shape these defence strategies so that they positively affect the fitness of an organism? This question is complex and depends on the taxa and environmental factors. Therefore, here, only a special case of this question is studied in deceptive species of orchids: reproductive success (RS, ratio of the number of fruits to the number of flowers produced by a plant during the whole season), a commonly used measure of fitness is used to develop a model describing how RS affects the number of flowers, n, of a plant. This model predicts that: (i) the resulting relationship between RS and n is a positively skewed parabola, (ii) the distribution of the numbers of individuals with a specific number (n) of flowers, NI(n), also resembles a parabola and is also positively skewed, and that (iii) the peak of the distribution of NI is to the left of the peak of RS. A large set of data is presented that supports these predictions. If the data set is small, the concave positively skewed parabolic RS-n dependence is obscured by other factors.
Zobrazit více v PubMed
Román-Palacios C., Wiens J.J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA. 2020;117:4211–4217. doi: 10.1073/pnas.1913007117. PubMed DOI PMC
Antonelli A., Govaerts R., Lughadha E.N., Onsteins R.E., Smith R.J., Zizka A. Why plant diversity and distribution matter. New Phytol. 2023;240:1331–1336. doi: 10.1111/nph.19282. PubMed DOI
Tsiftsis S., Štípková Z., Rejmánek M., Kindlmann P. Predictions of species distributions based only on models estimating future climate change are not reliable. Sci. Rep. 2024;14:25778. doi: 10.1038/s41598-024-76524-5. PubMed DOI PMC
Living Planet Report 2024. [(accessed on 15 October 2024)]. Available online: https://livingplanet.panda.org/
Jaureguiberry P., Titeux N., Wiemers M., Bowler D., Coscieme L., Golden A.S., Guerra C.A., Jacob U., Takahashi Y., Purvis A. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022;8:eabm9982. doi: 10.1126/sciadv.abm9982. PubMed DOI PMC
Newbold T., Hudson L.N., Hill S.L., Contu S., Lysenko I., Senior R.A., Börger L., Bennett D.J., Choimes A., Collen B., et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45–50. doi: 10.1038/nature14324. PubMed DOI
Giam X., Bradshaw C.J.A., Tan H.T.W., Sodhi N.S. Future habitat loss and the conservation of plant biodiversity. Biol. Conserv. 2010;143:1594–1602. doi: 10.1016/j.biocon.2010.04.019. DOI
Rejmánek M. Vascular plant extinctions in California: A critical assessment. Divers. Distrib. 2018;24:129–136. doi: 10.1111/ddi.12665. DOI
Rejmánek M., Krahulec F., Grulich V. Jak rychle a proč vymírají rostliny v antropocénu. Živa. 2021;5:219–223.
Moreira H., Kuipers K.J.J., Posthuma L., Zijp M.C., Hauck M., Huijbregts M.A.J., Schipper A.M. Threats of land use to the global diversity of vascular plants. Divers. Distrib. 2023;29:688–697. doi: 10.1111/ddi.13693. DOI
Sala O., Chapin III F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R.H., Huber-Sannwald E., Huenneke L., Jackson R., Kinzig A.P., et al. Biodiversity—Global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI
Urban M.C. Accelerating extinction risk from climate change. Science. 2015;348:571–573. doi: 10.1126/science.aaa4984. PubMed DOI
Wiens J.J. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLoS Biol. 2016;14:e2001104. doi: 10.1371/journal.pbio.2001104. PubMed DOI PMC
Warren R., Price J., Graham E., Forstenhaeusler N., Vanderwal J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science. 2018;360:791–795. doi: 10.1126/science.aar3646. PubMed DOI
Pigot A.L., Merow C., Wilson A., Trisos C.H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 2023;7:1060–1071. doi: 10.1038/s41559-023-02070-4. PubMed DOI
Mancini G., Santini L., Gazalis V., Akcakaya H.R., Lucas P.M., Brooks T.M., Foden W., Di Marco M. A standard approach for including climate change responses in IUCN Red List assessments. Conserv. Biol. 2024;38:e14227. doi: 10.1111/cobi.14227. PubMed DOI
Wiens J.J., Zelinka J. How many species will Earth lose to climate change? Glob. Chang. Biol. 2024;30:e17125. doi: 10.1111/gcb.17125. PubMed DOI
Švecová M., Štípková Z., Traxmandlová I., Kindlmann P. Difficulties in determining distribution of population sizes within different orchid metapopulations. Eur. J. Environ. Sci. 2023;13:96–109. doi: 10.14712/23361964.2023.11. DOI
Chase M.W., Cameron K.M., Freudenstein J.V., Pridgeon A.M., Salazar G., Van den Berg C., Schuiteman A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015;177:151–174. doi: 10.1111/boj.12234. DOI
Govaerts R. Catalogue of Life Checklist. The Royal Botanic Gardens, Kew; London, UK: 2022. The world checklist of vascular plants (WCVP). (Verze 10.0)
Dressler R.L. How many orchid species? Selbyana. 2005;26:155–158.
Christenhusz M.J.M., Byng J.W. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261:201. doi: 10.11646/phytotaxa.261.3.1. DOI
Gomiz N., Torretta J., Aliscioni S. Comparative anatomy of elaiophores and oil secretion in the genus Gomesa (Orchidaceae) Turk. J. Bot. 2013;37:859–871. doi: 10.3906/bot-1209-6. DOI
Sonkoly J., Vojtkó A.E., Tökölyi J., Török P., Sramkó G., Illyés Z., Molnár A.V. Higher seed number compensates for lower fruit set in deceptive orchids. J. Ecol. 2016;104:343–351. doi: 10.1111/1365-2745.12511. DOI
Johnson S.D., Nilsson L.A. Pollen carryover, geitonogamy, and the evolution of deceptive pollination systems in orchids. Ecology. 1999;80:2607–2619. doi: 10.1890/0012-9658(1999)080[2607:PCGATE]2.0.CO;2. DOI
Ackerman J.D. Mechanism and evolution of food-deceptive pollination systems in orchids. Lindleyana. 1986;1:108–113.
Jersáková J., Johnson S.D., Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. 2006;81:219. doi: 10.1017/S1464793105006986. PubMed DOI
Dressler R.L. The Orchids: Natural History and Classification. Harvard University Press; Cambridge, MA, USA: London, UK: 1981. 332p.
Dafni A. Mimicry and deception in pollination. Annu. Rev. Ecol. Syst. 1984;15:259–278. doi: 10.1146/annurev.es.15.110184.001355. DOI
Johnson S.D., Peter C.I., Nilsson L.A., Agren J. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology. 2003;84:2919–2927. doi: 10.1890/02-0471. DOI
Steffelová M., Traxmandlová I., Štípková Z., Kindlmann P. Pollination strategies of deceptive orchids—A review. Eur. J. Environ. Sci. 2023;13:110–116. doi: 10.14712/23361964.2023.12. DOI
Pellegrino G., Bellusci F., Palermo A.M. Functional differentiation in pollination processes among floral traits in Serapias species (Orchidaceae) Ecol. Evol. 2017;7:7171–7177. doi: 10.1002/ece3.3264. PubMed DOI PMC
Scaccabarozzi D., Guzzetti L., Phillips R.D., Milne L., Tommasi N., Cozzolino S., Dixon K.W. Ecological factors driving pollination success in an orchid that mimics a range of Fabaceae. Bot. J. Linn. Soc. 2020;194:253–269. doi: 10.1093/botlinnean/boaa039. DOI
Zhang W., Gao J. A comparative study on the reproductive success of two rewarding Habenaria species (Orchidaceae) occurring in roadside verge habitats. BMC Plant Biol. 2021;21:187. doi: 10.1186/s12870-021-02968-w. PubMed DOI PMC
Trapnell D.W., Hamrick J.L. Floral display and mating patterns within populations of the neotropical epiphytic orchid, Laelia rubescens (Orchidaceae) Am. J. Bot. 2006;93:1010–1017. doi: 10.3732/ajb.93.7.1010. PubMed DOI
Micheneau C., Johnson S.D., Fay M.F. Orchid pollination: From Darwin to the present day. Bot. J. Linn. Soc. 2009;161:1–19. doi: 10.1111/j.1095-8339.2009.00995.x. DOI
D’Auria M., Lorenz R., Mecca M., Racioppi R., Romano V. Aroma components of Cephalanthera orchids. Nat. Prod. Res. 2019;35:174–177. doi: 10.1080/14786419.2019.1616724. PubMed DOI
Pellegrino G., Caimi D., Noce M.E., Musacchio A. Effects of local density and flower colour polymorphism on pollination and reproduction in the rewardless orchid Dactylorhiza sambucina (L.) Soo. Plant Syst. Evol. 2005;251:119–129. doi: 10.1007/s00606-004-0248-6. DOI
Vandewoestijne S., Róis A.S., Caperta A., Baguette M., Tyteca D. Effects of individual and population parameters on reproductive success in three sexually deceptive orchid species. Plant Biol. 2009;11:454–463. doi: 10.1111/j.1438-8677.2008.00125.x. PubMed DOI
Kindlmann P., Jersáková J. Effect of floral display on reproductive success in terrestrial orchids. Folia Geobot. 2006;41:47–60. doi: 10.1007/BF02805261. DOI
Galizia C.G., Kunze J., Gumbert A., Borg-Karlson A.K., Sachse S., Markl C., Menzel R. Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav. Ecol. 2005;16:159–168. doi: 10.1093/beheco/arh147. DOI
Piper J.G., Waite S. The gender role of flowers of broad leaved Helleborine, Epipactis helleborine (L.) Crantz (Orchidaceae) Funct. Ecol. 1988;2:35–40. doi: 10.2307/2389457. DOI
Henneresse T., Wesselingh R.A., Tyteca D. Effects of floral display, conspecific density and rewarding species on fruit set in the deceptive orchid Orchis militaris (Orchidaceae) Plant Ecol. Evol. 2017;150:279–292. doi: 10.5091/plecevo.2017.1313. DOI
Neiland M.R.M., Wilcock C.C. Fruit set, nectar reward, and rarity in the Orchidaceae. Am. J. Bot. 1998;85:1657–1671. doi: 10.2307/2446499. PubMed DOI
Kindlmann P., Jersáková J. Floral display, reproductive success, and conservation of terrestrial orchids. Selbyana. 2005;26:136–144.
Hansen I., Olesen J.M. Comparison of reproductive success in two orchids: The nectarless Dactylorhiza majalis s.s. and the nectar-producing Gymnadenia conopsea s.l. Nord. J. Bot. 1999;19:665–671. doi: 10.1111/j.1756-1051.1999.tb00676.x. DOI
Johnson S. Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behaviour. Biol. J. Linn. Soc. 2000;71:119–132. doi: 10.1006/bijl.1999.0430. DOI
Brys R., Jacquemyn H., Hermy M. Pollination efficiency and reproductive patterns in relation to local plant density, population size, and floral display in the rewarding Listera ovata (Orchidaceae) Bot. J. Linn. Soc. 2008;157:713–721. doi: 10.1111/j.1095-8339.2008.00830.x. DOI
Vojtkó A.E., Sonkoly J., Lukács B.A., Molnár V.A. Factors affecting reproductive success in three entomophilous orchid species in Hungary. Acta Biol. Hung. 2015;66:231–241. doi: 10.1556/018.66.2015.2.9. PubMed DOI
Jersáková J., Johnson S.D. Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia. 2006;147:60–68. doi: 10.1007/s00442-005-0254-6. PubMed DOI
Hobbhahn N., Johnson S.D., Harder L.D. The mating consequences of rewarding vs. deceptive pollination systems: Is there a quantity-quality trade-off? Ecol. Monogr. 2017;87:91–104. doi: 10.1002/ecm.1235. DOI
Steffelová M. Bachelor’s Thesis. Charles University; Prague, Czech Republic: 2022. Reproductive Success in Pollination of Capricious Orchids. (In Czech)
Li P., Huang B.Q., Pemberton R.W., Luo Y.B., Cheng J. Floral display influences male and female reproductive success of the deceptive orchid Phaius delavayi. Plant Syst. Evol. 2011;296:21–27. doi: 10.1007/s00606-011-0473-8. DOI
Miranda-Molina Y.M., Gonzalez E.J., Marquez-Guzman J., Meave J.A., Perez-Garcia E.A. Pollination success in three tropical dry forest orchid species from Mexico: Insights from floral display, visitation rates, and flower micromorphology. Bot. Sci. 2021;99:771–790. doi: 10.17129/botsci.2785. DOI
Firmage D., Cole F. Reproductive success and inflorescence size of Calopogon tuberosus (Orchidaceae) Am. J. Bot. 1988;75:1371–1377. doi: 10.1002/j.1537-2197.1988.tb14198.x. DOI
Parra-Tabla V., Vargas C.F. Flowering synchrony and floral display size affect pollination success in a deceit-pollinated tropical orchid. Acta Oecologica-Int. J. Ecol. 2007;32:26–35. doi: 10.1016/j.actao.2007.02.002. DOI
Vallius E. Position-dependent reproductive success of flowers in Dactylorhiza maculata (Orchidaceae) Funct. Ecol. 2000;14:573–579. doi: 10.1046/j.1365-2435.2000.t01-1-00450.x. DOI
Kolanowska M., Michalska E. The effect of global warming on the Australian endemic orchid Cryptostylis leptochila and its pollinator. PLoS ONE. 2023;18:e0280922. doi: 10.1371/journal.pone.0280922. PubMed DOI PMC
Gale S.W., Fischer G.A., Cribb P.J., Fay M.F. Orchid conservation: Bridging the gap between science and practice. Bot. J. Linn. Soc. 2018;186:425–434. doi: 10.1093/botlinnean/boy003. DOI
Hu H., Wei Y., Wang W., Suonan J., Wang S., Chen Z., Guan J., Deng Y. Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau. Front. Plant Sci. 2022;13:948189. doi: 10.3389/fpls.2022.948189. PubMed DOI PMC
Tsiftsis S., Djordjevic V. Habitat effects and differences in the reproductive success of Orchis punctulata and Orchis purpurea (Orchidaceae) Turk. J. Bot. 2018;42:400–411. doi: 10.3906/bot-1711-22. DOI
Teibert C.F. Master’s Thesis. University of Natural Resources and Life Sciences; Vienna, Austria: 2018. Reproductive Success of Anacamptis morio (Orchidaceae) in the Donau-Auen National Park, Austria.
Jaňour T. Master’s Thesis. University of Western Bohemia; Pilsen, Czech Republic: 2023. Inventory Survey of Vascular Plants of the Natural Monuments Pístovská Louka. (In Czech)
Suetsugu K., Naito R.S., Fukushima S., Kawakita A., Kato M. Pollination system and the effect of inflorescence size on fruit set in the deceptive orchid Cephalanthera falcata. J. Plant Res. 2015;128:585–594. doi: 10.1007/s10265-015-0716-9. PubMed DOI
Borràs J., Cursach J. Female and male fitness of a sexually deceptive orchid with a narrow distribution area: From phenotypic traits to spatial distribution patterns. Plant Biol. 2021;23:130–139. doi: 10.1111/plb.13184. PubMed DOI
Mendzhul N. Bachelor’s Thesis. University of Western Bohemia; Pilsen, Czech Republic: 2024. Inventory Survey of the Páteříková huť Nature Reserve. (In Czech)
Smetana J. Bachelor’s Thesis. University of Western Bohemia; Pilsen, Czech Republic: 2024. Inventory Survey of Natural Monuments Studánky Near Cerhovice. (In Czech)
Steffelová M. Master’s Thesis. Charles University; Prague, Czech Republic: 2024. Factors Affecting Reproductive Success of Deceptive Orchids. (In Czech)
Lind H., Franzen M., Pettersson B., Nilsson L.A. Metapopulation pollination in the deceptive orchid Anacamptis pyramidalis. Nord. J. Bot. 2007;25:176–182. doi: 10.1111/j.0107-055X.2007.00103.x. DOI
Fantinato E., Del Vecchio S., Baltieri M., Fabris B., Buffa G. Are food-deceptive orchid species really functionally specialized for pollinators? Ecol. Res. 2017;32:951–959. doi: 10.1007/s11284-017-1501-0. DOI
Ostrowiecka B., Talalaj I., Brzosko E., Jermakowicz E., Mirski P., Kostro-Ambroziak A., Mielczarek L., Lason A., Kupryjanowicz J., Kotowicz J., et al. Pollinators and visitors of the generalized food-deceptive orchid Dactylorhiza majalis in North-Eastern Poland. Biologia. 2019;74:1247–1257. doi: 10.2478/s11756-019-00285-0. DOI
Schemske D.W. Evolution of floral display in the orchid Brassavola nodosa. Evolution. 1980;34:489–493. doi: 10.2307/2408218. PubMed DOI
Dressler R.L. Phylogeny and Classification of the Orchid Family. Cambridge University Press; Cambridge, UK: 1993.
Swarts N.D., Dixon K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009;104:543–556. doi: 10.1093/aob/mcp025. PubMed DOI PMC
Cribb P.J., Kell S.P., Dixon K.W., Barrett R.L. Orchid Conservation: A Global Perspective. In: Dixon K.W., Kell S.P., Barrett R.L., Cribb P.J., editors. Orchid Conservation. Natural History Publications; Kota Kinabalu, Malaysia: 2003. pp. 1–2.
Štípková Z., Kindlmann P. Orchid Extinction over the Last 150 Years in the Czech Republic. Diversity. 2021;13:78. doi: 10.3390/d13020078. DOI
Průša D. Orchideje České Republiky. Computer Press; Brno, Czech Republic: 2005.
Kotilínek M. Plán Péče o Přírodní Památku Svaté Pole na Období 2017–2026. Agentura Ochrany Přírody a Krajiny; Pilsen, Czech Republic: 2017.
Management Plan for the Český Kras PLA for the Period 2020–2029. Nature and Landscape Protection Agency; Prague, Czech Republic: 2020.