Epiphytic Orchid Diversity along an Altitudinal Gradient in Central Nepal
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018123
Ministry of Education, Youth and Sports of Czech Republic within the CzeCOS program
PubMed
34371584
PubMed Central
PMC8309340
DOI
10.3390/plants10071381
PII: plants10071381
Knihovny.cz E-zdroje
- Klíčová slova
- Orchidaceae, diversity pattern, ecology, environmental factors, host,
- Publikační typ
- časopisecké články MeSH
Epiphytic orchids are common in subtropical forests, but little is known about the factors that determine their diversity. We surveyed two sites (north-facing Phulchowki and south-facing Shivapuri hills), in the sub-tropical forest in the Kathmandu valley, central Nepal. Along five transects per site, spanning an altitudinal gradient of 1525-2606 m a.s.l., we recorded all epiphytic orchids and the host species on which they were growing. The data were analyzed using a generalized linear model (GLM) and redundancy analysis (RDA). Species richness significantly decreased with increasing altitude and was higher in larger hosts and in places with high temperature. Species composition was affected by altitude, distance from the forest edge, host type, and precipitation. This study indicates that the most important factors affecting epiphytic orchid diversity was altitude, even if other factors were associated with patterns in composition. The low-altitude habitats with high species diversity are the best places for epiphytic orchids in this region. The altitudinal species richness and patterns in composition revealed by this study provide a baseline for further studies on epiphytic orchids.
Botanics Nepal Annapurna Marg 32 Kathmandu 44604 Nepal
Institute of Botany Czech Academy of Sciences Zámek 1 25243 Průhonice Czech Republic
National Herbarium and Plant Laboratories Post Box No 3708 Godawari 5 Lalitpur 44709 Nepal
Zobrazit více v PubMed
Ding Y., Liu G., Zang R., Zhang J., Lu X., Huang J. Distribution of Vascular Epiphytes along a Tropical Elevational Gradient: Disentangling Abiotic and Biotic Determinants. Sci. Rep. 2016;6 doi: 10.1038/srep19706. PubMed DOI PMC
Kreft H., Jetz W., Mutke J., Barthlott W. Contrasting Environmental and Regional Effects on Global Pteridophyte and Seed Plant Diversity. Ecography. 2010;33:408–419. doi: 10.1111/j.1600-0587.2010.06434.x. DOI
Djordjević V., Tsiftsis S. The role of ecological factors in distribution and abundance of terrestrial orchids. In: Merillon J.-M., Kodja H., editors. Orchids Phytochemistry, Biology and Horticulture. Springer; Cham, Switzerland: 2020. pp. 1–71.
Hemrová L., Kotilínek M., Konečná M., Paulič R., Jersáková J., Těšitelová T., Knappová J., Münzbergová Z. Identification of Drivers of Landscape Distribution of Forest Orchids Using Germination Experiment and Species Distribution Models. Oecologia. 2019;190:411–423. doi: 10.1007/s00442-019-04427-8. PubMed DOI
Tsiftsis S., Štípková Z., Kindlmann P. Role of Way of Life, Latitude, Elevation and Climate on the Richness and Distribution of Orchid Species. Biodivers. Conserv. 2019;28:75–96. doi: 10.1007/s10531-018-1637-4. DOI
Furtado S.G., Menini Neto L. Elevational and Phytophysiognomic Gradients Influence the Epiphytic Community in a Cloud Forest of the Atlantic Phytogeographic Domain. Plant Ecol. 2018;219:677–690. doi: 10.1007/s11258-018-0826-2. DOI
Hrivnák M., Slezák M., Galvánek D., Vlčko J., Belanová E., Rízová V., Senko D., Hrivnák R. Species Richness, Ecology, and Prediction of Orchids in Central Europe: Local-Scale Study. Diversity. 2020;12:154. doi: 10.3390/d12040154. DOI
Spitale D. The Interaction between Elevational Gradient and Substratum Reveals How Bryophytes Respond to the Climate. J. Veg. Sci. 2016;27:844–853. doi: 10.1111/jvs.12403. DOI
Keppel G., Gillespie T.W., Ormerod P., Fricker G.A. Habitat Diversity Predicts Orchid Diversity in the Tropical South-West Pacific. J. Biogeogr. 2016;43:2332–2342. doi: 10.1111/jbi.12805. DOI
Štípková Z., Tsiftsis S., Kindlmann P. Pollination Mechanisms Are Driving Orchid Distribution in Space. Sci. Rep. 2020;10:850. doi: 10.1038/s41598-020-57871-5. PubMed DOI PMC
Zhang S.-B., Chen W.-Y., Huang J.-L., Bi Y.-F., Yang X.-F. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China. PLoS ONE. 2015;10:e0142621. doi: 10.1371/journal.pone.0142621. PubMed DOI PMC
Tsiftsis S. The Complex Effect of Heterogeneity and Isolation in Determining Alpha and Beta Orchid Diversity on Islands in the Aegean Archipelago. Syst. Biodivers. 2020;18:281–294. doi: 10.1080/14772000.2020.1738584. DOI
Adhikari Y.P., Fischer A., Fischer H.S., Rokaya M.B., Bhattarai P., Gruppe A. Diversity, Composition and Host-Species Relationships of Epiphytic Orchids and Ferns in Two Forests in Nepal. J. Mt. Sci. 2017;14:1065–1075. doi: 10.1007/s11629-016-4194-x. DOI
Adhikari Y.P., Fischer A., Fischer H.S. Micro-Site Conditions of Epiphytic Orchids in a Human Impact Gradient in Kathmandu Valley, Nepal. J. Mt. Sci. 2012;9:331–342. doi: 10.1007/s11629-009-2262-1. DOI
Timsina B., Rokaya M.B., Münzbergová Z., Kindlmann P., Shrestha B., Bhattarai B., Raskoti B.B. Diversity, Distribution and Host-Species Associations of Epiphytic Orchids in Nepal. Biodivers. Conserv. 2016;25:2803–2819. doi: 10.1007/s10531-016-1205-8. DOI
Wang X., Long W., Schamp B.S., Yang X., Kang Y., Xie Z., Xiong M. Vascular Epiphyte Diversity Differs with Host Crown Zone and Diameter, but Not Orientation in a Tropical Cloud Forest. PLoS ONE. 2016;11:e0158548. doi: 10.1371/journal.pone.0158548. PubMed DOI PMC
Fay M.F. Orchid Conservation: How Can We Meet the Challenges in the Twenty-First Century? Bot. Stud. 2018;59:16. doi: 10.1186/s40529-018-0232-z. PubMed DOI PMC
Gale S.W., Fischer G.A., Cribb P.J., Fay M.F. Orchid Conservation: Bridging the Gap between Science and Practice. Bot. J. Linn. Soc. 2018;186:425–434. doi: 10.1093/botlinnean/boy003. DOI
IUCN The IUCN Red List of Threatened Species. [(accessed on 5 May 2021)]; Available online: https://www.iucnredlist.org/.%20es.
Seaton P., Kendon J.P., Pritchard H.W., Murti Puspitaningtyas D., Marks T.R. Orchid Conservation: The next Ten Years. Lankesteriana. 2013;13:93–101. doi: 10.15517/lank.v0i0.11545. DOI
Swarts N.D., Dixon K.W. Perspectives on Orchid Conservation in Botanic Gardens. Trends Plant Sci. 2009;14:590–598. doi: 10.1016/j.tplants.2009.07.008. PubMed DOI
Wraith J., Norman P., Pickering C. Orchid Conservation and Research: An Analysis of Gaps and Priorities for Globally Red Listed Species. Ambio. 2020;49:1601–1611. doi: 10.1007/s13280-019-01306-7. PubMed DOI PMC
Jalal J.S. Status, Threats and Conservation Strategies for Orchids of Western Himalaya, India. J. Threat. Taxa. 2012;4:3401–3409. doi: 10.11609/JoTT.o3062.3401-9. DOI
Hirata A., Kamijo T., Saito S. Host Trait Preferences and Distribution of Vascular Epiphytes in a Warm-Temperate Forest. Plant Ecol. 2009;201:247–254. doi: 10.1007/s11258-008-9519-6. DOI
Acharya K.P., Vetaas O.R., Birks H.J.B. Orchid Species Richness along Himalayan Elevational Gradients. J. Biogeogr. 2011;38:1821–1833. doi: 10.1111/j.1365-2699.2011.02511.x. DOI
Köster N., Friedrich K., Nieder J., Barthlott W. Conservation of Epiphyte Diversity in an Andean Landscape Transformed by Human Land Use. Conserv. Biol. 2009;23:911–919. doi: 10.1111/j.1523-1739.2008.01164.x. PubMed DOI
Chase M.W., Cameron K.M., Freudenstein J.V., Pridgeon A.M., Salazar G., van den Berg C., Schuiteman A. An Updated Classification of Orchidaceae: Updated Classification of Orchidaceae. Bot. J. Linn. Soc. 2015;177:151–174. doi: 10.1111/boj.12234. DOI
Christenhusz M.J.M., Byng J.W. The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa. 2016;261:201. doi: 10.11646/phytotaxa.261.3.1. DOI
Raskoti B.B. In: The Orchids of Nepal. 1st ed. Raskoti B.B., editor. Ale; Kathmandu, Nepal: 2009.
Rokaya M.B., Raskoti B.B., Timsina B., Münzbergová Z. An Annotated Checklist of the Orchids of Nepal. Nord. J. Bot. 2013;31:511–550. doi: 10.1111/j.1756-1051.2013.01230.x. DOI
Pant B., Paudel M.R., Chand M.B., Pradhan S., Malla B.B., Raskoti B.B. Orchid Diversity in Two Community Forests of Makawanpur District, Central Nepal. J. Threat. Taxa. 2018;10:12523–12530. doi: 10.11609/jott.3516.10.11.12523-12530. DOI
Adhikari Y.P., Fischer A., Fischer H.S. Epiphytic Orchids and Their Ecological Niche under Anthropogenic Influence in Central Himalayas, Nepal. J. Mt. Sci. 2016:1–11. doi: 10.1007/s11629-015-3751-z. DOI
Zhang Z., Yan Y., Tian Y., Li J., He J.-S., Tang Z. Distribution and Conservation of Orchid Species Richness in China. Biol. Conserv. 2015;181:64–72. doi: 10.1016/j.biocon.2014.10.026. DOI
Teoh E.S. Orchids as Aphrodisiac, Medicine or Food. Springer International Publishing; Berlin/Heidelberg, Germany: 2019.
Teoh E.S. Medicinal Orchids of Asia. Springer International Publishing; Berlin/Heidelberg, Germany: 2016.
Liu Q., Chen J., Corlett R.T., Fan X., Yu D., Yang H., Gao J. Orchid Conservation in the Biodiversity Hotspot of Southwestern China: Orchid Conservation in Xishuangbanna. Conserv. Biol. 2015;29:1563–1572. doi: 10.1111/cobi.12584. PubMed DOI
Singh S.K., Agrawala D.K., Jalal J.S., Dash S.S., Mao A.A., Singh P. Orchids of India: A Handbook. M/s Bishen Singh Mahendra Pal Singh; Dehra Dun, India: 2019.
Körner C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007;22:569–574. doi: 10.1016/j.tree.2007.09.006. PubMed DOI
Rasmussen H.N., Rasmussen F.N. The Epiphytic Habitat on a Living Host: Reflections on the Orchid–Tree Relationship. Bot. J. Linn. Soc. 2018;186:456–472. doi: 10.1093/botlinnean/box085. DOI
Zhang W., Huang D., Wang R., Liu J., Du N. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China. PLoS ONE. 2016;11:e0159995. doi: 10.1371/journal.pone.0159995. PubMed DOI PMC
Bhandari P., Shakya L.R., Chaudhary R.P. Zeuxine Lindleyana (Orchidaceae)—A New Record for the Flora of Nepal. J. Jpn. Bot. 2019;94:45–46.
Paudel H.R. The First Record of the Genus Tropidia Lindl. (Orchidaceae) from Nepal. Int. J. Appl. Sci. Biotechnol. Sci. 2020;1:153–157.
Raskoti B.B., Ale R. Molecular Phylogeny and Morphology Reveal a New Epiphytic Species of Habenaria (Orchidaceae; Orchideae; Orchidinae) from Nepal. PLoS ONE. 2019;14:e0223355. doi: 10.1371/journal.pone.0223355. PubMed DOI PMC
Pant B., Raskoti B.B. Medicinal Orchids of Nepal. Himalayan Map House Pvt. Ltd.; Kathmandu, Nepal: 2013.
Vaidya B.N. Nepal: A global hostspot for medicinal orchids. In: Joshee N., Dhekney S.A., Parajuli P., editors. Medicinal Plants: From Farm to Pharmacy. Springer Nature Switzerland; Cham, Switzerland: 2019. pp. 35–80.
Pradhan S., Regmi T., Ranjit M., Pant B. Production of Virus-Free Orchid Cymbidium Aloifolium (L.) Sw. by Various Tissue Culture Techniques. Heliyon. 2016;2:e00176. doi: 10.1016/j.heliyon.2016.e00176. PubMed DOI PMC
Adhikari Y.P., Fischer H.S., Fischer A. Host Tree Utilization by Epiphytic Orchids in Different Land-Use Intensities in Kathmandu Valley, Nepal. Plant Ecol. 2012;213:1393–1412. doi: 10.1007/s11258-012-0099-0. DOI
Adhikari Y.P., Fischer A., Pauleit S. Sustainable Conservation Perspectives for Epiphytic Orchids in the Central Himalayas, Nepal. Appl. Ecol. Environ. Res. 2015;13:753–767. doi: 10.15666/aeer/1303_753767. DOI
Hsu R.C.-C., Wolf J.H.D., Tamis W.L.M. Regional and Elevational Patterns in Vascular Epiphyte Richness on an East Asian Island. Biotropica. 2014;46:549–555. doi: 10.1111/btp.12131. DOI
Vetaas O.R., Grytnes J.-A. Distribution of Vascular Plant Species Richness and Endemic Richness along the Himalayan Elevation Gradient in Nepal. Glob. Ecol. Biogeogr. 2002;11:291–301. doi: 10.1046/j.1466-822X.2002.00297.x. DOI
Baniya C.B., SolhøY T., Gauslaa Y., Palmer M.W. The Elevation Gradient of Lichen Species Richness in Nepal. Lichenologist. 2010;42:83. doi: 10.1017/S0024282909008627. DOI
Bhattarai K.R., Vetaas O.R., Grytnes J.A. Fern Species Richness along a Central Himalayan Elevational Gradient, Nepal. J. Biogeogr. 2004;31:389–400. doi: 10.1046/j.0305-0270.2003.01013.x. DOI
Bhattarai K.R., Vetaas O.R. Variation in Plant Species Richness of Different Life Forms along a Subtropical Elevation Gradient in the Himalayas, East Nepal. Glob. Ecol. Biogeogr. 2003;12:327–340. doi: 10.1046/j.1466-822X.2003.00044.x. DOI
Grau O., Grytnes J.-A., Birks H.J.B. A Comparison of Altitudinal Species Richness Patterns of Bryophytes with Other Plant Groups in Nepal, Central Himalaya. J. Biogeogr. 2007;34:1907–1915. doi: 10.1111/j.1365-2699.2007.01745.x. DOI
Grytnes J.A., Vetaas O.R. Species Richness and Altitude: A Comparison between Null Models and Interpolated Plant Species Richness along the Himalayan Altitudinal Gradient, Nepal. Am. Nat. 2002;159:294–304. doi: 10.1086/338542. PubMed DOI
Rokaya M.B., Münzbergová Z., Shrestha M.R., Timsina B. Distribution Patterns of Medicinal Plants along an Elevational Gradient in Central Himalaya, Nepal. J. Mt. Sci. 2012;9:201–213. doi: 10.1007/s11629-012-2144-9. DOI
Vetaas O.R., Paudel K.P., Christensen M. Principal Factors Controlling Biodiversity along an Elevation Gradient: Water, Energy and Their Interaction. J. Biogeogr. 2019 doi: 10.1111/jbi.13564. DOI
Sharma N., Behera M.D., Das A.P., Panda R.M. Plant Richness Pattern in an Elevation Gradient in the Eastern Himalaya. Biodivers. Conserv. 2019;28:2085–2104. doi: 10.1007/s10531-019-01699-7. DOI
Sharma P., Samant S.S. Diversity, Distribution, Indigenous Uses and Conservation of Orchids in Parvati Valley of Kullu District, Himachal Pradesh, Northwestern Himalaya. J. Biodivers. Endanger Species. 2017;5:1–5. doi: 10.4172/2332-2543.1000177. DOI
Sharma A., Samant S.S., Bhandari S., Butola J.S. Diversity, Distribution, and Conservation Status of Orchids along an Alitudinal Gradient in Himanchal Pradesh, North Western Himalaya. J. Orchid Soc. India. 2017;31:23–32.
Devi K., Samant S.S., Puri S., Dutt S. Diversity, Distribution Pattern and Indigenous Uses of Orchids in Kanawar Wildlife Sanctuary of Himanchal Pradesh, Northwestern Himalaya. J. Orchid Soc. India. 2018;32:17–23.
Bhuju U.R., Shakya P.R., Basnet T., Shrestha S. Nepal Biodiversity Resource Book: Protected Areas, Ramsar Sites, and World Heritage Sites. ICIMOD, Government of Nepal and UNEP; Kathmandu, Nepal: 2007.
Katuwal H.B., Pradhan N.M.B., Thakuri J.J., Bhusal K.P., Aryal P.C., Thapa I. Effect of Urbanization and Seasonality in Bird Communities of Kathmandu Valley, Nepal. Proc. Zool. Soc. 2018;71:103–113. doi: 10.1007/s12595-018-0265-z. DOI
Shrestha M., Acharya S.C. Assessment of Historical and Future Land-use–Land-cover Changes and Their Impact on Valuation of Ecosystem Services in Kathmandu Valley, Nepal. Land Degrad. Dev. 2020:1–12. doi: 10.1002/ldr.3837. DOI
Wang S.W., Gebru B.M., Lamchin M., Kayastha R.B., Lee W.-K. Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS. Sustainability. 2020;12:3925. doi: 10.3390/su12093925. DOI
Shrestha S., Joshi L., Dangol M. Assessment of Land Use Change in Shivapuri Nagarjun National Park: The Case of Sundarijal VDC, Kathmandu. Ecoprint. 2013;20:53–59. doi: 10.3126/eco.v20i0.11441. DOI
Måren I.E., Karki S., Prajapati C., Yadav R.K., Shrestha B.B. Facing North or South: Does Slope Aspect Impact Forest Stand Characteristics and Soil Properties in a Semiarid Trans-Himalayan Valley? J. Arid Environ. 2015;121:112–123. doi: 10.1016/j.jaridenv.2015.06.004. DOI
DoHM . Department of Hydrology and Meteorology. Ministry of Science, Technology & Environment; Kathmandu, Nepal: 2015.
Pearce N.R., Cribb P.J. Orchids of Bhutan: Including a Record of Plants from Sikkim and Darjeeling. Volume 3. Royal Botanic Garden Edinburgh; Edinburgh, UK: 2002.
White K., Sharma B. Wild Orchids in Nepal, The Guide to the Himalayan Orichids of the Tribhuvan Rajpath and Chitwan Jungle. White Lotus Co Ltd.; Bangkok, Thailand: 2000.
. Flora of Kathmandu Valley. Volume 11 Ministry of Forests and Soil Conservation, Department of Medicinal Plants; Kathmandu, Nepal: 1986.
Polunin O., Stainton A. Flowers of the Himalaya. Oxford University Press; New Delhi, India: 1984.
Stainton A. Flowers of the Himalaya: A Supplement. Oxford University Press; New Delhi, India: 1988.
Storrs A., Storrs J. Trees and Shrubs of Nepal and the Himalayas. Books Faith India; New Dehli, India: 1998.
TPL The Plant List. [(accessed on 20 December 2020)]; Available online: www.theplantlist.org.
Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Nieukerken E., et al. Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. [(accessed on 17 January 2021)]; Available online: www.catalogueoflife.org/annual-checklist/2019.
Press J.R., Shrestha K.K., Sutton D.A. Annotated Checklist of the Flowering Plants of Nepal. Natural History Museum; London, UK: 2000.
WCSP World Checklist of Selected Plant Families. [(accessed on 2 January 2021)]; Available online: https://wcsp.science.kew.org/wcsp/
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Ferrier S., Manion G., Elith J., Richardson K. Using Generalized Dissimilarity Modelling to Analyse and Predict Patterns of Beta Diversity in Regional Biodiversity Assessment. Divers. Distrib. 2007;13:252–264. doi: 10.1111/j.1472-4642.2007.00341.x. DOI
Manion G., Lisk M., Ferrier S., Nieto-Lugilde D., Fitzpatrick M.C. Gdm: Functions for Generalized Dissimilarity Modeling. [(accessed on 31 June 2021)];2021 Available online: https://cran.r-project.org/web/packages/gdm/index.htm.
R Development Core Team R: A Language and Environment for Statistical Computing. [(accessed on 18 March 2018)]; Available online: https://www.r-project.org.
Fox J., Monette G. Generalized Collinearity Diagonistics. J. Am. Stat. Assoc. 1992;87:178–183. doi: 10.1080/01621459.1992.10475190. DOI
Lumley T. Package ‘Leaps’. [(accessed on 31 June 2021)];2020 Available online: https://cran.r-project.org/web/packages/leaps/index.html.
Mattos A.P., Tolentino Júnior J.B., Itako A.T. Determination of the Severity of Septoria Leaf Spot in Tomato by Using Digital Images. Australas. Plant Pathol. 2020;49:329–356. doi: 10.1007/s13313-020-00697-6. DOI
Legendre P., Legendre L. Numerical Ecology. Elsevier Science; Amsterdam, The Netherlands: 1998. Developments in Environmental Modelling.
Ter Braak C.J.F., Šmilauer P. Canoco 5, Windows Release (5.12) Biometris, Plant Research International; Wageningen, The Netherlands: 2012. [(accessed on 31 June 2021)]. Available online: http://www.canoco5.com.
. Flora of Royal Botanical Garden (Phanerogams) Volume 6 Ministry of Forests and Soil Conservation, Department of Medicinal Plants; Kathmandu, Nepal: 2003.
. Supplement to the Flora of Phulchoki and Godawari. Volume 2 Ministry of Forests and Soil Conservation, Department of Medicinal Plants; Kathmandu, Nepal: 1974.
. Flora of Phulchoki and Godawari. 1st ed. H. M. G. of Nepal, Ministry of Forests, Department of Medicinal Plants; Kathmandu, Nepal: 1969.
. Notes on Flora of Rajnikunj (Gorkarna Forest) Volume 11 Ministry of Forests and Soil Conservation, Department of Medicinal Plants; Kathmandu, Nepal: 1967.
Rokaya M.B., Kasaju S., Khadka B. Hoya Polyneura (Apocynaceae)-An Addition to the Flora of Nepal. Jpn. J. Bot. 2020;95:354–357.
Adhikari B., Wood J.R.I. Thunbergia Kasajuana, a New Species of Acanthaceae from Nepal. Kew Bull. 2020;75:26. doi: 10.1007/s12225-020-9883-5. DOI
Boelter C.R., Zartman C.E., Fonseca C.R. Exotic Tree Monocultures Play a Limited Role in the Conservation of Atlantic Forest Epiphytes. Biodivers. Conserv. 2011;20:1255–1272. doi: 10.1007/s10531-011-0026-z. DOI
Jacquemyn H., Micheneau C., Roberts D.L., Pailler T. Elevational Gradients of Species Diversity, Breeding System and Floral Traits of Orchid Species on Réunion Island. J. Biogeogr. 2005;32:1751–1761. doi: 10.1111/j.1365-2699.2005.01307.x. DOI
Wolf J.H., Flamenco S.A. Patterns in Species Richness and Distribution of Vascular Epiphytes in Chiapas, Mexico. J. Biogeogr. 2003;30:1689–1707. doi: 10.1046/j.1365-2699.2003.00902.x. DOI
Juiling S., Leon S.K., Jumian J., Tsen S., Lee Y.L., Khoo E., Sugau J.B., Nilus R., Pereira J.T., Damit A., et al. Conservation Assessment and Spatial Distribution of Endemic Orchids in Sabah, Borneo. Nat. Conserv. Res. 2020;5:136–144. doi: 10.24189/ncr.2020.053. DOI
Halbritter A.H., Fior S., Keller I., Billeter R., Edwards P.J., Holderegger R., Karrenberg S., Pluess A.R., Widmer A., Alexander J.M. Trait Differentiation and Adaptation of Plants along Elevation Gradients. J. Evol. Biol. 2018;31:784–800. doi: 10.1111/jeb.13262. PubMed DOI
Miehe G., Pendry C.A., Chaudhary R., editors. Nepal: An Introduction to the Natural History, Ecology and Human Environment in the Himalayas. Royal Botanic Garden Edinburgh; Edinburgh, UK: 2015.
Connor E.F., McCoy E.D. Encyclopedia of Biodiversity. Volume 5. Academic Press; Cambridge, MA, USA: 2002. Species-area relationships; pp. 397–411.
Flores-Palacios A., García-Franco J.G. The Relationship between Tree Size and Epiphyte Species Richness: Testing Four Different Hypotheses. J. Biogeogr. 2006;33:323–330. doi: 10.1111/j.1365-2699.2005.01382.x. DOI
Mehltreter K., Flores-Palacios A., García-Franco J.G. Host Preferences of Low-Trunk Vascular Epiphytes in a Cloud Forest of Veracruz, Mexico. J. Trop. Ecol. 2005;21:651–660. doi: 10.1017/S0266467405002683. DOI
Waldock C., Dornelas M., Bates A.E. Temperature-Driven Biodiversity Change: Disentangling Space and Time. BioScience. 2018;68:873–884. doi: 10.1093/biosci/biy096. PubMed DOI PMC
Burrows M.T., Hawkins S.J., Moore J.J., Adams L., Sugden H., Firth L., Mieszkowska N. Global-scale Species Distributions Predict Temperature-related Changes in Species Composition of Rocky Shore Communities in Britain. Glob. Chang. Biol. 2020;26:2093–2105. doi: 10.1111/gcb.14968. PubMed DOI
Pedroso-de-Moraes C., Prezzi L.E., de Souza-Leal T., Canonici T.F., Jr O.R., Silveira P. Edge Dffect on Orchids of a Fragment of Semi-Deciduous Seasonal Forest in the Southeast of Brazil. Iheringia. 2015;70:115–127.
Bianchi J.S., Kersten R. de A. Edge Effect on Vascular Epiphytes in a Subtropical Atlantic Forest. Acta Bot. Bras. 2014;28:120–126. doi: 10.1590/S0102-33062014000100012. DOI
Parra-Sanchez E., Banks-Leite C. The Magnitude and Extent of Edge Effects on Vascular Epiphytes across the Brazilian Atlantic Forest. Sci. Rep. 2020;10:18847. doi: 10.1038/s41598-020-75970-1. PubMed DOI PMC
Davies-Colley R.J., Payne G.W. Microclimate Gradients across a Forest Edge. N. Z. J. Ecol. 2000;24:111–121.
Wagner K., Mendieta-Leiva G., Zotz G. Host Specificity in Vascular Epiphytes: A Review of Methodology, Empirical Evidence and Potential Mechanisms. AoB Plants. 2015 doi: 10.1093/aobpla/plu092. PubMed DOI PMC