Deciphering the Role of p53 and TAp73 in Neuroblastoma: From Pathogenesis to Treatment

. 2022 Dec 16 ; 14 (24) : . [epub] 20221216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36551697

Grantová podpora
UID/QUI/50006/2020 Fundação para a Ciência e Tecnologia

Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies.

Zobrazit více v PubMed

Batlle E., Clevers H. Cancer stem cells revisited. Nat. Med. 2017;23:1124–1134. doi: 10.1038/nm.4409. PubMed DOI

Shi X., Wang Y., Zhang L., Zhao W., Dai X., Yang Y.-G., Zhang X. Targeting bromodomain and extra-terminal proteins to inhibit neuroblastoma tumorigenesis through regulating MYCN. Front. Cell Dev. Biol. 2022;10:1021820. doi: 10.3389/fcell.2022.1021820. PubMed DOI PMC

Newman E.A., Abdessalam S., Aldrink J.H., Austin M., Heaton T.E., Bruny J., Ehrlich P., Dasgupta R., Baertschiger R.M., Lautz T.B., et al. Update on neuroblastoma. J. Pediatr. Surg. 2019;54:383–389. doi: 10.1016/j.jpedsurg.2018.09.004. PubMed DOI

Kameneva P., Artemov A.V., Kastriti M.E., Faure L., Olsen T.K., Otte J., Erickson A., Semsch B., Andersson E.R., Ratz M., et al. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat. Genet. 2021;53:694–706. doi: 10.1038/s41588-021-00818-x. PubMed DOI PMC

Jansky S., Sharma A.K., Körber V., Quintero A., Toprak U.H., Wecht E.M., Gartlgruber M., Greco A., Chomsky E., Grünewald T.G.P., et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat. Genet. 2021;53:683–693. doi: 10.1038/s41588-021-00806-1. PubMed DOI

Kastriti M.E., Faure L., Von Ahsen D., Bouderlique T.G., Boström J., Solovieva T., Jackson C., Bronner M., Meijer D., Hadjab S., et al. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J. 2022;41:e108780. doi: 10.15252/embj.2021108780. PubMed DOI PMC

Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. Nat. Rev. Dis. Prim. 2016;2:16078. doi: 10.1038/nrdp.2016.78. PubMed DOI

Lundberg K.I., Treis D., Johnsen J.I. Neuroblastoma Heterogeneity, Plasticity, and Emerging Therapies. Curr. Oncol. Rep. 2022;24:1053–1062. doi: 10.1007/s11912-022-01270-8. PubMed DOI PMC

Nicolai S., Pieraccioli M., Peschiaroli A., Melino G., Raschellà G. Neuroblastoma: Oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis. 2015;6:e2010. doi: 10.1038/cddis.2015.354. PubMed DOI PMC

Nakagawara A., Li Y., Izumi H., Muramori K., Inada H., Nishi M. Neuroblastoma. Jpn. J. Clin. Oncol. 2018;48:214–241. doi: 10.1093/jjco/hyx176. PubMed DOI

Park J.R., Eggert A., Caron H. Neuroblastoma: Biology, Prognosis, and Treatment. Hematol. Oncol. Clin. N. Am. 2010;24:65–86. doi: 10.1016/j.hoc.2009.11.011. PubMed DOI

Bresler S.C., Weiser D.A., Huwe P.J., Park J.H., Krytska K., Ryles H., Laudenslager M., Rappaport E.F., Wood A.C., McGrady P.W., et al. ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma. Cancer Cell. 2014;26:682–694. doi: 10.1016/j.ccell.2014.09.019. PubMed DOI PMC

Mossé Y.P., Laudenslager M., Longo L., Cole K.A., Wood A., Attiyeh E.F., Laquaglia M.J., Sennett R., Lynch J.E., Perri P., et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–935. doi: 10.1038/nature07261. PubMed DOI PMC

Janoueix-Lerosey I., Lequin D., Brugières L., Ribeiro A., De Pontual L., Combaret V., Raynal V., Puisieux A., Schleiermacher G., Pierron G., et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–970. doi: 10.1038/nature07398. PubMed DOI

Liu Z., Thiele C.J. Molecular Genetics of Neuroblastoma. In: Pacak K., Taïeb D., editors. Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Humana Press; Totowaa, NJ, USA: 2017. pp. 83–125.

Kameneva P., Kastriti M.E., Adameyko I. Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cell. Mol. Life Sci. 2021;78:513–529. doi: 10.1007/s00018-020-03609-5. PubMed DOI PMC

Mosse Y.P., Laudenslager M., Khazi D., Carlisle A.J., Winter C.L., Rappaport E., Maris J.M. Germline PHOX2B Mutation in Hereditary Neuroblastoma. Am. J. Hum. Genet. 2004;75:727–730. doi: 10.1086/424530. PubMed DOI PMC

Trochet D., Bourdeaut F., Janoueix-Lerosey I., Deville A., De Pontual L., Schleiermacher G., Coze C., Philip N., Frébourg T., Munnich A., et al. Germline Mutations of the Paired-Like Homeobox 2B (PHOX2B) Gene in Neuroblastoma. Am. J. Hum. Genet. 2004;74:761–764. doi: 10.1086/383253. PubMed DOI PMC

Valentijn L.J., Koster J., Zwijnenburg D.A., Hasselt N.E., Van Sluis P., Volckmann R., Van Noesel M.M., George R.E., Tytgat G.A.M., Molenaar J.J., et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 2015;47:1411–1414. doi: 10.1038/ng.3438. PubMed DOI

Brodeur G.M., Minturn J.E., Ho R., Simpson A.M., Iyer R., Varela C.R., Light J.E., Kolla V., Evans A.E. Trk receptor expression and inhibition in neuroblastomas. Clin. Cancer Res. 2009;15:3244–3250. doi: 10.1158/1078-0432.CCR-08-1815. PubMed DOI PMC

Carén H., Kryh H., Nethander M., Sjöberg R.M., Träger C., Nilsson S., Abrahamsson J., Kogner P., Martinsson T. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc. Natl. Acad. Sci. USA. 2010;107:4323–4328. doi: 10.1073/pnas.0910684107. PubMed DOI PMC

J Ribelles A., Barberá S., Yáñez Y., Gargallo P., Segura V., Juan B., Noguera R., Piqueras M., Fornés-Ferrer V., de Mora J.F., et al. Clinical Features of Neuroblastoma With 11q Deletion: An Increase in Relapse Probabilities In Localized And 4S Stages. Sci. Rep. 2019;9:13806. doi: 10.1038/s41598-019-50327-5. PubMed DOI PMC

Hogarty M.D., Liu X., Guo C., Thompson P.M., Weiss M.J., White P.S., Sulman E.P., Brodeur G.M., Maris J.M. Identification of a 1-megabase consensus region of deletion at 1p36.3 in Primary neuroblastomas. Med. Pediatr. Oncol. 2000;35:512–515. doi: 10.1002/1096-911X(20001201)35:6<512::AID-MPO2>3.0.CO;2-D. PubMed DOI

Ichimiya S., Nimura Y., Kageyama H., Takada N., Sunahara M., Shishikura T., Nakamura Y., Sakiyama S., Seki N., Ohira M., et al. P73 At Chromosome 1P36.3 Is Lost in Advanced Stage Neuroblastoma But Its Mutation Is Infrequent. Oncogene. 1999;18:1061–1066. doi: 10.1038/sj.onc.1202390. PubMed DOI

Collavin L., Lunardi A., Del Sal G. P53-family proteins and their regulators: Hubs and spokes in tumor suppression. Cell Death Differ. 2010;17:901–911. doi: 10.1038/cdd.2010.35. PubMed DOI

Ramos H., Raimundo L., Saraiva L. p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol. Res. 2020;162:105245. doi: 10.1016/j.phrs.2020.105245. PubMed DOI

Wang C., Teo C.R., Sabapathy K. P53-related transcription targets of TAp73 in cancer cells—Bona fide or distorted reality? Int. J. Mol. Sci. 2020;21:1346. doi: 10.3390/ijms21041346. PubMed DOI PMC

Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C., et al. P63 Is Essential for Regenerative Proliferation in Limb, Craniofacial and Epithelial Development. Nature. 1999;398:714–718. doi: 10.1038/19539. PubMed DOI

Yang A., Walker N., Bronson R., Kaghad M., Oosterwegel M., Bonnin J., Vagner C., Bonnet H., Dikkesk P., Sharpe A., et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature. 2000;404:99–103. doi: 10.1038/35003607. PubMed DOI

Wei J., Zaika E., Zaika A. P53 family: Role of protein isoforms in human cancer. J. Nucleic Acids. 2012;2012:687359. doi: 10.1155/2012/687359. PubMed DOI PMC

Dötsch V., Bernassola F., Coutandin D., Candi E., Melino G. P63 and P73, the Ancestors of P53. Cold Spring Harb. Perspect. Biol. 2010;2:a004887. doi: 10.1101/cshperspect.a004887. PubMed DOI PMC

Stiewe T. The p53 family in differentiation and tumorigenesis. Nat. Rev. Cancer. 2007;7:165–168. doi: 10.1038/nrc2072. PubMed DOI

Vousden K.H., Lane D.P. P53 in Health and Disease. Nat. Rev. Mol. Cell Biol. 2007;8:275–283. doi: 10.1038/nrm2147. PubMed DOI

Machado-Silva A., Perrier S., Bourdon J.C. P53 family members in cancer diagnosis and treatment. Semin. Cancer Biol. 2010;20:57–62. doi: 10.1016/j.semcancer.2010.02.005. PubMed DOI

Ichimiya S., Nakagawara A., Sakuma Y., Kimura S., Ikeda T., Satoh M., Takahashi N., Sato N., Mori M. p73: Structure and function. Pathol. Int. 2000;50:589–593. doi: 10.1046/j.1440-1827.2000.01090.x. PubMed DOI

De Laurenzi V., Raschellá G., Barcaroli D., Annicchiarico-Petruzzelli M., Ranalli M., Catani M.V., Tanno B., Costanzo A., Levrero M., Melino G. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J. Biol. Chem. 2000;275:15226–15231. doi: 10.1074/jbc.275.20.15226. PubMed DOI

Wagner L.M., Danks M.K. New therapeutic targets for the treatment of high-risk neuroblastoma. J. Cell. Biochem. 2009;107:46–57. doi: 10.1002/jcb.22094. PubMed DOI

Vogan K., Bernstein M., Leclerc J.M., Brisson L., Brossard J., Brodeur G.M., Pelletier J., Gros P. Absence of p53 Gene Mutations in Primary Neuroblastomas. Cancer Res. 1993;53:5269–5273. PubMed

Zhu X., Wimmer K., Kuick R., Lamb B.J., Motyka S., Jasty R., Castle V.P., Hanash S.M. N-myc modulates expression of p73 in neuroblastoma. Neoplasia. 2002;4:432–439. doi: 10.1038/sj.neo.7900255. PubMed DOI PMC

Ikawa S., Nakagawara A., Ikawa Y. p53 family genes: Structural comparison, expression and mutation. Cell Death Differ. 1999;6:1154–1161. doi: 10.1038/sj.cdd.4400631. PubMed DOI

Inomistova M.V., Svergun N.M., Khranovska N.M., Skachkova O.V., Gorbach O.I., Klymnyuk G.I. Prognostic significance of MDM2 gene expression in childhood neuroblastoma. Exp. Oncol. 2015;37:111–115. doi: 10.31768/2312-8852.2015.37(2):111-115. PubMed DOI

Berberich S.J. Sub-Cellular Biochemistry. Volume 85. Springer; Dordrecht, The Netherlands: 2014. Mdm2 and MdmX involvement in human cancer; pp. 263–280. PubMed

Corvi R., Savelyeva L., Breit S., Wenzel A., Handgretinger R., Barak J., Oren M., Amler L., Schwab M. Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene. 1995;10:1081–1086. PubMed

Rayburn E., Zhang R., He J., Wang H. MDM2 and human malignancies: Expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr. Cancer Drug Targets. 2005;5:27–41. doi: 10.2174/1568009053332636. PubMed DOI

Zafar A., Wang W., Liu G., Xian W., McKeon F., Zhou J., Zhang R. Targeting the p53-MDM2 pathway for neuroblastoma therapy: Rays of hope. Cancer Lett. 2021;496:16–29. doi: 10.1016/j.canlet.2020.09.023. PubMed DOI PMC

Wade M., Li Y.C., Wahl G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer. 2013;13:83–96. doi: 10.1038/nrc3430. PubMed DOI PMC

Karni-Schmidt O., Lokshin M., Prives C. The Roles of MDM2 and MDMX in Cancer. Annu. Rev. Pathol. Mech. Dis. 2016;11:617–644. doi: 10.1146/annurev-pathol-012414-040349. PubMed DOI PMC

Bálint E., Bates S., Vousden K.H. Mdm2 binds p73α without targeting degradation. Oncogene. 1999;18:3923–3929. doi: 10.1038/sj.onc.1202781. PubMed DOI

Dobbelstein M., Wienzek S., König C., Roth J. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene. 1999;18:2101–2106. doi: 10.1038/sj.onc.1202512. PubMed DOI

Wu H., Leng R.P. MDM2 mediates p73 ubiquitination: A new molecular mechanism for suppression of p73 function. Oncotarget. 2015;6:21479–21492. doi: 10.18632/oncotarget.4086. PubMed DOI PMC

Gu J., Nie L., Wiederschain D., Yuan Z.-M. Identification of p53 Sequence Elements That Are Required for MDM2-Mediated Nuclear Export. Mol. Cell. Biol. 2001;21:8533–8546. doi: 10.1128/MCB.21.24.8533-8546.2001. PubMed DOI PMC

Shi Y., Takenobu H., Kurata K., Yamaguchi Y., Yanagisawa R., Ohira M., Koike K., Nakagawara A., Jiang L.L., Kamijo T. HDM2 impairs Noxa transcription and affects apoptotic cell death in a p53/p73-dependent manner in neuroblastoma. Eur. J. Cancer. 2010;46:2324–2334. doi: 10.1016/j.ejca.2010.05.026. PubMed DOI

Barbieri E., Mehta P., Chen Z., Zhang L., Slack A., Berg S., Shohet J.M. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol. Cancer Ther. 2006;5:2358–2365. doi: 10.1158/1535-7163.MCT-06-0305. PubMed DOI

Van Maerken T., Speleman F., Vermeulen J., Lambertz I., De Clercq S., De Smet E., Yigit N., Coppens V., Philippé J., De Paepe A., et al. Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res. 2006;66:9646–9655. doi: 10.1158/0008-5472.CAN-06-0792. PubMed DOI

Gamble L.D., Kees U.R., Tweddle D.A., Lunec J. MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63. Oncogene. 2012;31:752–763. doi: 10.1038/onc.2011.270. PubMed DOI PMC

Kung C.P., Weber J.D. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front. Cell Dev. Biol. 2022;10:818744. doi: 10.3389/fcell.2022.818744. PubMed DOI PMC

Van Maerken T., Vandesompele J., Rihani A., De Paepe A., Speleman F. Escape from p53-mediated tumor surveillance in neuroblastoma: Switching off the p14ARF-MDM2-p53 axis. Cell Death Differ. 2009;16:1563–1572. doi: 10.1038/cdd.2009.138. PubMed DOI

Carr-Wilkinson J., O’Toole K., Wood K.M., Challen C.C., Baker A.G., Board J.R., Evans L., Cole M., Cheung N.K.V., Boos J., et al. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin. Cancer Res. 2010;16:1108–1118. doi: 10.1158/1078-0432.CCR-09-1865. PubMed DOI PMC

Gomes A.S., Ramos H., Inga A., Sousa E., Saraiva L. Structural and drug targeting insights on mutant p53. Cancers. 2021;13:3344. doi: 10.3390/cancers13133344. PubMed DOI PMC

Muller P.A.J., Vousden K.H. P53 mutations in cancer. Nat. Cell Biol. 2013;15:2–8. doi: 10.1038/ncb2641. PubMed DOI

Bargonetti J., Reynisdottir I., Friedman P.N., Prives C. Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev. 1992;6:1886–1898. doi: 10.1101/gad.6.10.1886. PubMed DOI

Kern S.E., Pietenpol J.A., Thiagalingam S., Seymour A., Kinzler K.W., Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992;256:827–830. doi: 10.1126/science.256.5058.827. PubMed DOI

Gaiddon C., Lokshin M., Ahn J., Zhang T., Prives C. A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Mol. Cell. Biol. 2001;21:1874–1887. doi: 10.1128/MCB.21.5.1874-1887.2001. PubMed DOI PMC

Di Agostino S., Cortese G., Monti O., Dell’Orso S., Sacchi A., Eisenstein M., Citro G., Strano S., Blandino G. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle. 2008;7:3440–3447. doi: 10.4161/cc.7.21.6995. PubMed DOI

Schulz-Heddergott R., Moll U.M. Gain-of-function (GOF) mutant p53 as actionable therapeutic target. Cancers. 2018;10:188. doi: 10.3390/cancers10060188. PubMed DOI PMC

Di Agostino S. The impact of mutant p53 in the non-coding RNA world. Biomolecules. 2020;10:472. doi: 10.3390/biom10030472. PubMed DOI PMC

Dong P., Karaayvaz M., Jia N., Kaneuchi M., Hamada J., Watari H., Sudo S., Ju J., Sakuragi N. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013;32:3286–3295. doi: 10.1038/onc.2012.334. PubMed DOI PMC

Neilsen P.M., Noll J.E., Mattiske S., Bracken C.P., Gregory P.A., Schulz R.B., Lim S.P., Kumar R., Suetani R.J., Goodall G.J., et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene. 2013;32:2992–3000. doi: 10.1038/onc.2012.305. PubMed DOI

Marin M.C., Jost C.A., Brooks L.A., Irwin M.S., O’Nions J., Tidy J.A., James N., McGregor J.M., Harwood C.A., Yulug I.G., et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 2000;25:47–54. doi: 10.1038/75586. PubMed DOI

Bergamaschi D., Gasco M., Hiller L., Sullivan A., Syed N., Trigiante G., Yulug I., Merlano M., Numico G., Comino A., et al. P53 Polymorphism Influences Response in Cancer Chemotherapy Via Modulation of P73-Dependent Apoptosis. Cancer Cell. 2003;3:387–402. doi: 10.1016/S1535-6108(03)00079-5. PubMed DOI

Irwin M.S., Kondo K., Marin M.C., Cheng L.S., Hahn W.C., Kaelin W.G. Chemosensitivity linked to p73 function. Cancer Cell. 2003;3:403–410. doi: 10.1016/S1535-6108(03)00078-3. PubMed DOI

Hosoi G., Hara J., Okamura T., Osugi Y., Fukuzawa M., Okada A., Tawa A. Low frequency of the p53 gene mutations in neuroblastoma. Cancer. 1994;73:3087–3093. doi: 10.1002/1097-0142(19940615)73:12<3087::AID-CNCR2820731230>3.0.CO;2-9. PubMed DOI

Davidoff A.M., Pence J.C., Shorter N.A., Iglehart J.D., Marks J.R. Expression of p53 in human neuroblastoma- and neuroepithelioma-derived cell lines. Oncogene. 1992;7:127–133. PubMed

Keshelava N., Zuo J.J., Sitara Waidyaratne N., Triche T.J., Patrick Reynolds C. p53 Mutations and loss of p53 function confer multidrug resistance in neuroblastoma. Med. Pediatr. Oncol. 2000;35:563–568. doi: 10.1002/1096-911X(20001201)35:6<563::AID-MPO15>3.0.CO;2-J. PubMed DOI

Keshelava N., Zuo J.J., Chen P., Waidyaratne S.N., Luna M.C., Gomer C.J., Triche T.J., Reynolds C.P., Keshelava N., Zuo J.J., et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res. 2001;61:6185–6193. PubMed

Imamura J., Bartram C.R., Berthold F., Harms D., Nakamura H., Koeffler H.P. Mutation of the p53 Gene in Neuroblastoma and Its Relationship with N-myc Amplification. Cancer Res. 1993;53:4053–4058. PubMed

Manhani R., Cristofani L.M., Filho V.O., Bendit I. Concomitant p53 mutation and MYCN amplification if neuroblastoma. Med. Pediatr. Oncol. 1997;29:206–207. doi: 10.1002/(SICI)1096-911X(199709)29:3<206::AID-MPO7>3.0.CO;2-H. PubMed DOI

Tweddle D.A., Malcolm A.J., Bown N., Pearson A.D.J., Lunec J. Evidence for the Development of p53 Mutations after Cytotoxic Therapy in a Neuroblastoma Cell Line. Cancer Res. 2001;61:8–13. PubMed

Maris J.M., Matthay K.K. Molecular biology of neuroblastoma. J. Clin. Oncol. 1999;17:2264–2279. doi: 10.1200/JCO.1999.17.7.2264. PubMed DOI

Kravchenko J.E., Ilyinskaya G.V., Komarov P.G., Agapova L.S., Kochetkov D.V., Strom E., Frolova E.I., Kovriga I., Gudkov A.V., Feinstein E., et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl. Acad. Sci. USA. 2008;105:6302–6307. doi: 10.1073/pnas.0802091105. PubMed DOI PMC

Muller P.A.J., Vousden K.H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 2014;25:304–317. doi: 10.1016/j.ccr.2014.01.021. PubMed DOI PMC

Gomes S., Raimundo L., Soares J., Loureiro J.B., Leão M., Ramos H., Monteiro M.N., Lemos A., Moreira J., Pinto M., et al. New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Lett. 2019;446:90–102. doi: 10.1016/j.canlet.2019.01.014. PubMed DOI

Tomasini R., Tsuchihara K., Wilhelm M., Fujitani M., Rufini A., Cheung C.C., Khan F., Itie-Youten A., Wakeham A., Tsao M.S., et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008;22:2677–2691. doi: 10.1101/gad.1695308. PubMed DOI PMC

Casciano I., Mazzocco K., Boni L., Pagnan G., Banelli B., Allemanni G., Ponzoni M., Tonini G.P., Romani M. Expression of ΔNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ. 2002;9:246–251. doi: 10.1038/sj.cdd.4400993. PubMed DOI

Wolter J., Angelini P., Irwin M. p53 family: Therapeutic targets in neuroblastoma. Futur. Oncol. 2010;6:429–444. doi: 10.2217/fon.09.176. PubMed DOI

Romani M., Tonini G.P., Banelli B., Allemanni G., Mazzocco K., Scaruffi P., Boni L., Ponzoni M., Pagnan G., Raffaghello L., et al. Biological and clinical role of p73 in neuroblastoma. Cancer Lett. 2003;197:111–117. doi: 10.1016/S0304-3835(03)00092-2. PubMed DOI

Rufini A., Agostini M., Grespi F., Tomasini R., Sayan B.S., Niklison-Chirou M.V., Conforti F., Velletri T., Mastino A., Mak T.W., et al. P73 in cancer. Genes Cancer. 2011;2:491–502. doi: 10.1177/1947601911408890. PubMed DOI PMC

Martinez-Delgado B., Melendez B., Cuadros M., Garcia M.J., Nomdedeu J., Rivas C., Fernandez-Piqueras J., Benítez J. Frequent inactivation of the p73 gene by abnormal methylation or LOH in Non-Hodgkin’s Lymphomas. Int. J. Cancer. 2002;102:15–19. doi: 10.1002/ijc.10618. PubMed DOI

Banelli B., Casciano I., Romani M. Methylation-independent silencing of the p73 gene in neuroblastoma. Oncogene. 2000;19:4553–4556. doi: 10.1038/sj.onc.1203807. PubMed DOI

Pozniak C.D., Radinovic S., Yang A., McKeon F., Kaplan D.R., Miller F.D. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science. 2000;289:304–306. doi: 10.1126/science.289.5477.304. PubMed DOI

Wilhelm M.T., Rufini A., Wetzel M.K., Tsuchihara K., Inoue S., Tomasini R., Itie-Youten A., Wakeham A., Arsenian-Henriksson M., Melino G., et al. Isoform-specific p73 knockout mice reveal a novel role for ΔNp73 in the DNA damage response pathway. Genes Dev. 2010;24:549–560. doi: 10.1101/gad.1873910. PubMed DOI PMC

Casciano I., Banelli B., Croce M., Allemanni G., Ferrini S., Tonini G.P., Ponzoni M., Romani M. Role of methylation in the control of ΔNp73 expression in neuroblastoma. Cell Death Differ. 2002;9:343–345. doi: 10.1038/sj.cdd.4400992. PubMed DOI

Melino G., Gallagher E., Aqeilan R.I., Knight R., Peschiaroli A., Rossi M., Scialpi F., Malatesta M., Zocchi L., Browne G., et al. Itch: A HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 2008;15:1103–1112. doi: 10.1038/cdd.2008.60. PubMed DOI

Bernassola F., Karin M., Ciechanover A., Melino G. The HECT Family of E3 Ubiquitin Ligases: Multiple Players in Cancer Development. Cancer Cell. 2008;14:10–21. doi: 10.1016/j.ccr.2008.06.001. PubMed DOI

Hansen T.M., Rossi M., Roperch J.P., Ansell K., Simpson K., Taylor D., Mathon N., Knight R.A., Melino G. Itch inhibition regulates chemosensitivity in vitro. Biochem. Biophys. Res. Commun. 2007;361:33–36. doi: 10.1016/j.bbrc.2007.06.104. PubMed DOI

Bongiorno-Borbone L., Giacobbe A., Compagnone M., Eramo A., De Maria R., Peschiaroli A., Melino G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget. 2015;6:16926–16938. doi: 10.18632/oncotarget.4700. PubMed DOI PMC

de la Fuente M., Jones M.C., Santander-Ortega M.J., Mirenska A., Marimuthu P., Uchegbu I., Schätzlein A. A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer. Nanomed. Nanotechnol. Biol. Med. 2015;11:369–377. doi: 10.1016/j.nano.2014.09.010. PubMed DOI

Meng J., Tagalakis A.D., Hart S.L. Silencing E3 Ubiqutin ligase ITCH as a potential therapy to enhance chemotherapy efficacy in p53 mutant neuroblastoma cells. Sci. Rep. 2020;10:1046. doi: 10.1038/s41598-020-57854-6. PubMed DOI PMC

Yin Q., Wyatt C.J., Han T., Smalley K.S.M., Wan L. ITCH as a potential therapeutic target in human cancers. Semin. Cancer Biol. 2020;67:117–130. doi: 10.1016/j.semcancer.2020.03.003. PubMed DOI PMC

Chaudhary N., Maddika S. WWP2-WWP1 Ubiquitin Ligase Complex Coordinated by PPM1G Maintains the Balance between Cellular p73 and ΔNp73 Levels. Mol. Cell. Biol. 2014;34:3754–3764. doi: 10.1128/MCB.00101-14. PubMed DOI PMC

Peschiaroli A., Scialpi F., Bernassola F., Pagano M., Melino G. The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene. 2009;28:3157–3166. doi: 10.1038/onc.2009.177. PubMed DOI PMC

Sayan B.S., Yang A.L., Conforti F., Tucci P., Piro M.C., Browne G.J., Agostini M., Bernardini S., Knight R.A., Mak T.W., et al. Differential control of TAp73 and ΔNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proc. Natl. Acad. Sci. USA. 2010;107:12877–12882. doi: 10.1073/pnas.0911828107. PubMed DOI PMC

Rossi M., De Laurenzi V., Munarriz E., Green D.R., Liu Y.C., Vousden K.H., Cesareni G., Melino G. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J. 2005;24:836–848. doi: 10.1038/sj.emboj.7600444. PubMed DOI PMC

Rossi M., Rotblat B., Ansell K., Amelio I., Caraglia M., Misso G., Bernassola F., Cavasotto C.N., Knight R.A., Ciechanover A., et al. High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy. Cell Death Dis. 2014;5:e1203. doi: 10.1038/cddis.2014.113. PubMed DOI PMC

Gillman P.K. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br. J. Pharmacol. 2007;151:737–748. doi: 10.1038/sj.bjp.0707253. PubMed DOI PMC

Mou P.K., Yang E.J., Shi C., Ren G., Tao S., Shim J.S. Aurora kinase A, a synthetic lethal target for precision cancer medicine. Exp. Mol. Med. 2021;53:835–847. doi: 10.1038/s12276-021-00635-6. PubMed DOI PMC

Yang Y., Ding L., Zhou Q., Fen L., Cao Y., Sun J., Zhou X., Liu A. Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. Cancer Cell Int. 2020;20:9. doi: 10.1186/s12935-019-1072-y. PubMed DOI PMC

Goldenson B., Crispino J.D. The aurora kinases in cell cycle and leukemia. Oncogene. 2015;34:537–545. doi: 10.1038/onc.2014.14. PubMed DOI PMC

Nikonova A.S., Astsaturov I., Serebriiskii I.G., Dunbrack R.L., Golemis E.A. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci. 2013;70:661–687. doi: 10.1007/s00018-012-1073-7. PubMed DOI PMC

Sasai K., Treekitkarnmongkol W., Kai K., Katayama H., Sen S. Functional significance of Aurora kinases-p53 protein family interactions in cancer. Front. Oncol. 2016;6:247. doi: 10.3389/fonc.2016.00247. PubMed DOI PMC

Marumoto T., Hirota T., Morisaki T., Kunitoku N., Zhang D., Ichikawa Y., Sasayama T., Kuninaka S., Mimori T., Tamaki N., et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells. 2002;7:1173–1182. doi: 10.1046/j.1365-2443.2002.00592.x. PubMed DOI

Shao S., Wang Y., Jin S., Song Y., Wang X., Fan W., Zhao Z., Fu M., Tong T., Dong L., et al. Gadd45a interacts with aurora-A and inhibits its kinase activity. J. Biol. Chem. 2006;281:28943–28950. doi: 10.1074/jbc.M600235200. PubMed DOI

Mao J.H., Perez-Iosada J., Wu D., DelRosario R., Tsunematsu R., Nakayama K.I., Brown K., Bryson S., Balmain A. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432:775–779. doi: 10.1038/nature03155. PubMed DOI

Wu C.C., Yang T.Y., Yu C.T.R., Phan L., Ivan C., Sood A.K., Hsu S.L., Lee M.H. p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle. 2012;11:3433–3442. doi: 10.4161/cc.21732. PubMed DOI PMC

Teng C.L., Hsieh Y.C., Phan L., Shin J., Gully C., Velazquez-Torres G., Skerl S., Yeung S.C.J., Hsu S.L., Lee M.H. FBXW7 is involved in Aurora B degradation. Cell Cycle. 2012;11:4059–4068. doi: 10.4161/cc.22381. PubMed DOI PMC

Kwon Y.W., Kim I.J., Wu D., Lu J., Stock W.A., Liu Y., Huang Y., Kang H.C., DelRosario R., Jen K.Y., et al. Pten regulates Aurora-A and cooperates with Fbxw7 in modulating radiation-induced tumor development. Mol. Cancer Res. 2012;10:834–844. doi: 10.1158/1541-7786.MCR-12-0025. PubMed DOI PMC

Mao J.H., Wu D., Perez-Losada J., Jiang T., Li Q., Neve R.M., Gray J.W., Cai W.W., Balmain A. Crosstalk between Aurora-A and p53: Frequent Deletion or Downregulation of Aurora-A in Tumors from p53 Null Mice. Cancer Cell. 2007;11:161–173. doi: 10.1016/j.ccr.2006.11.025. PubMed DOI PMC

Otto T., Horn S., Brockmann M., Eilers U., Schüttrumpf L., Popov N., Kenney A.M., Schulte J.H., Beijersbergen R., Christiansen H., et al. Stabilization of N-Myc Is a Critical Function of Aurora A in Human Neuroblastoma. Cancer Cell. 2009;15:67–78. doi: 10.1016/j.ccr.2008.12.005. PubMed DOI

Brockmann M., Poon E., Berry T., Carstensen A., Deubzer H.E., Rycak L., Jamin Y., Thway K., Robinson S.P., Roels F., et al. Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma. Cancer Cell. 2013;24:75–89. doi: 10.1016/j.ccr.2013.05.005. PubMed DOI PMC

Katayama H., Sasai K., Kawai H., Yuan Z.M., Bondaruk J., Suzuki F., Fujii S., Arlinghaus R.B., Czerniak B.A., Sen S. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat. Genet. 2004;36:55–62. doi: 10.1038/ng1279. PubMed DOI

Liu Q., Kaneko S., Yang L., Feldman R.I., Nicosia S.V., Chen J., Cheng J.Q. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem. 2004;279:52175–52182. doi: 10.1074/jbc.M406802200. PubMed DOI

Dar A.A., Belkhiri A., Ecsedy J., Zaika A., El-Rifai W. Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res. 2008;68:8998–9004. doi: 10.1158/0008-5472.CAN-08-2658. PubMed DOI PMC

Katayama H., Wang J., Treekitkarnmongkol W., Kawai H., Sasai K., Zhang H., Wang H., Adams H.P., Jiang S., Chakraborty S.N., et al. Aurora Kinase-A Inactivates DNA Damage-Induced Apoptosis and Spindle Assembly Checkpoint Response Functions of p73. Cancer Cell. 2012;21:196–211. doi: 10.1016/j.ccr.2011.12.025. PubMed DOI PMC

Gao F., Ponte J.F., Levy M., Papageorgis P., Cook N.M., Ozturk S., Lambert A.W., Thiagalingam A., Abdolmaleky H.M., Sullivan B.A., et al. hBub1 negatively regulates p53 mediated early cell death upon mitotic checkpoint activation. Cancer Biol. Ther. 2009;8:636–644. doi: 10.4161/cbt.8.7.7929. PubMed DOI

Fujiwara T., Bandi M., Nitta M., Ivanova E.V., Bronson R.T., Pellman D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature. 2005;437:1043–1047. doi: 10.1038/nature04217. PubMed DOI

Margolis R.L., Lohez O.D., Andreassen P.R. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J. Cell. Biochem. 2003;88:673–683. doi: 10.1002/jcb.10411. PubMed DOI

Andreassen P.R., Lohez O.D., Lacroix F.B., Margolis R.L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell. 2001;12:1315–1328. doi: 10.1091/mbc.12.5.1315. PubMed DOI PMC

Tomasini R., Tsuchihara K., Tsuda C., Lau S.K., Wilhelm M., Ruffini A., Tsao M.S., Iovanna J.L., Jurisicova A., Melino G., et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc. Natl. Acad. Sci. USA. 2009;106:797–802. doi: 10.1073/pnas.0812096106. PubMed DOI PMC

Vernole P., Neale M.H., Barcaroli D., Munarriz E., Knight R.A., Tomasini R., Mak T.W., Melino G., De Laurenzi V. TAp73α binds the kinetochore proteins Bub1 and Bub3 resulting in polyploidy. Cell Cycle. 2009;8:421–429. doi: 10.4161/cc.8.3.7623. PubMed DOI

Marrazzo E., Marchini S., Tavecchio M., Alberio T., Previdi S., Erba E., Rotter V., Broggini M. The expression of the ΔNp73β isoform of p73 leads to tetraploidy. Eur. J. Cancer. 2009;45:443–453. doi: 10.1016/j.ejca.2008.09.024. PubMed DOI

Yi J.S., Sias-Garcia O., Nasholm N., Hu X., Iniguez A.B., Hall M.D., Davis M., Guha R., Moreno-Smith M., Barbieri E., et al. The synergy of BET inhibitors with aurora A kinase inhibitors in MYCN-amplified neuroblastoma is heightened with functional TP53. Neoplasia. 2021;23:624–633. doi: 10.1016/j.neo.2021.05.003. PubMed DOI PMC

Nguyen R., Wang H., Sun M., Lee D.G., Peng J., Thiele C.J. Combining selinexor with alisertib to target the p53 pathway in neuroblastoma. Neoplasia. 2022;26:100776. doi: 10.1016/j.neo.2022.100776. PubMed DOI PMC

Schwab M., Ellison J., Busch M. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc. Natl. Acad. Sci. USA. 1984;81:4940–4944. doi: 10.1073/pnas.81.15.4940. PubMed DOI PMC

Kohl N.E., Kanda N., Schreck R.R., Bruns G., Latt S.A., Gilbert F., Alt F.W. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35:359–367. doi: 10.1016/0092-8674(83)90169-1. PubMed DOI

Higashi M., Sakai K., Fumino S., Aoi S., Furukawa T., Tajiri T. The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development. Surg. Today. 2019;49:721–727. doi: 10.1007/s00595-019-01790-0. PubMed DOI

Wakamatsu Y., Watanabe Y., Nakamura H., Kondoh H. Regulation of the neural crest cell fate by N-myc: Promotion of ventral migration and neuronal differentiation. Development. 1997;124:1953–1962. doi: 10.1242/dev.124.10.1953. PubMed DOI

Dominguez-Sola D., Ying C.Y., Grandori C., Ruggiero L., Chen B., Li M., Galloway D.A., Gu W., Gautier J., Dalla-Favera R. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448:445–451. doi: 10.1038/nature05953. PubMed DOI

Shachaf C.M., Kopelman A.M., Arvanitis C., Karlsson Å., Beer S., Mandl S., Bachmann M.H., Borowsky A.D., Ruebner B., Cardiff R.D., et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431:1112–1117. doi: 10.1038/nature03043. PubMed DOI

Jain M., Arvanitis C., Chu K., Dewey W., Leonhardt E., Trinh M., Sundberg C.D., Bishop J.M., Felsher D.W. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297:102–104. doi: 10.1126/science.1071489. PubMed DOI

Kubota Y., Kim S.H., Iguchi-Ariga S.M.M., Ariga H. Transrepression of the N-MYC expression by C-MYC protein. Biochem. Biophys. Res. Commun. 1989;162:991–997. doi: 10.1016/0006-291X(89)90771-7. PubMed DOI

Levy N., Yonish-Rouach E., Oren M., Kimchi A. Complementation by wild-type p53 of interleukin-6 effects on M1 cells: Induction of cell cycle exit and cooperativity with c-myc suppression. Mol. Cell. Biol. 1993;13:7942–7952. doi: 10.1128/mcb.13.12.7942-7952.1993. PubMed DOI PMC

Ho J.S.L., Ma W., Mao D.Y.L., Benchimol S. p53-Dependent Transcriptional Repression of c-myc Is Required for G1 Cell Cycle Arrest. Mol. Cell. Biol. 2005;25:7423–7431. doi: 10.1128/MCB.25.17.7423-7431.2005. PubMed DOI PMC

Feng Y.C., Liu X.Y., Teng L., Ji Q., Wu Y., Li J.M., Gao W., Zhang Y.Y., La T., Tabatabaee H., et al. c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat. Commun. 2020;11:4980. doi: 10.1038/s41467-020-18735-8. PubMed DOI PMC

Watanabe K.I., Ozaki T., Nakagawa T., Miyazaki K., Takahashi M., Hosoda M., Hayashi S., Todo S., Nakagawara A. Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. J. Biol. Chem. 2002;277:15113–15123. doi: 10.1074/jbc.M111281200. PubMed DOI

Chen L., Tweddle D.A. p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance. Front. Oncol. 2012;2:173. doi: 10.3389/fonc.2012.00173. PubMed DOI PMC

Zindy F., Eischen C.M., Randle D.H., Kamijo T., Cleveland J.L., Sherr C.J., Roussel M.F. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 1998;12:2424–2433. doi: 10.1101/gad.12.15.2424. PubMed DOI PMC

Otte J., Dyberg C., Pepich A., Johnsen J.I. MYCN Function in Neuroblastoma Development. Front. Oncol. 2021;10:624079. doi: 10.3389/fonc.2020.624079. PubMed DOI PMC

Chen J., Guan Z. Function of Oncogene Mycn in Adult Neurogenesis and Oligodendrogenesis. Mol. Neurobiol. 2022;59:77–92. doi: 10.1007/s12035-021-02584-7. PubMed DOI PMC

Knoepfler P.S., Cheng P.F., Eisenman R.N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16:2699–2712. doi: 10.1101/gad.1021202. PubMed DOI PMC

Alam G., Cui H., Shi H., Yang L., Ding J., Mao L., Maltese W.A., Ding H.F. MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am. J. Pathol. 2009;175:856–866. doi: 10.2353/ajpath.2009.090019. PubMed DOI PMC

Kapeli K., Hurlin P.J. Differential Regulation of N-Myc and c-Myc Synthesis, Degradation, and Transcriptional Activity by the Ras/Mitogen-activated Protein Kinase Pathway. J. Biol. Chem. 2011;286:38498–38508. doi: 10.1074/jbc.M111.276675. PubMed DOI PMC

Maris J.M. Recent Advances in Neuroblastoma. N. Engl. J. Med. 2010;362:2202–2211. doi: 10.1056/NEJMra0804577. PubMed DOI PMC

Huang M., Weiss W.A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 2013;3:a014415. doi: 10.1101/cshperspect.a014415. PubMed DOI PMC

Schwab M., Alitalo K., Klempnauer K.H., Varmus H.E., Bishop J.M., Gilbert F., Brodeur G., Goldstein M., Trent J. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature. 1983;305:245–248. doi: 10.1038/305245a0. PubMed DOI

Seeger R.C., Brodeur G.M., Sather H., Dalton A., Siegel S.E., Wong K.Y., Hammond D. Association of multiple copies of the N-MYC oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 1985;313:1111–1116. doi: 10.1056/NEJM198510313131802. PubMed DOI

Brodeur G., Seeger R., Schwab M., Varmus H., Bishop J. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–1124. doi: 10.1126/science.6719137. PubMed DOI

Weiss W.A., Aldape K., Mohapatra G., Feuerstein B.G., Bishop J.M., Hooper G.W. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–2995. doi: 10.1093/emboj/16.11.2985. PubMed DOI PMC

Althoff K., Beckers A., Bell E., Nortmeyer M., Thor T., Sprüssel A., Lindner S., De Preter K., Florin A., Heukamp L.C. A Cre-conditional MYCN -driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene. 2015;34:3357–3368. doi: 10.1038/onc.2014.269. PubMed DOI PMC

Olsen R.R., Otero J.H., Wallace K., Finkelstein D., Rehg J.E., Yin Z., Wang Y., Freeman K.W. MYCN induces neuroblastoma in primary neural crest cells. Oncogene. 2017;36:5075–5082. doi: 10.1038/onc.2017.128. PubMed DOI PMC

Zhu S., Lee J., Guo F., Shin J., Perez-atayde A.R., Kutok J.L., Rodig S.J., Neuberg D.S., Helman D., Feng H., et al. Article Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell. 2012;21:362–373. doi: 10.1016/j.ccr.2012.02.010. PubMed DOI PMC

Powers J.T., Tsanov K.M., Pearson D.S., Roels F., Spina C.S., Ebright R., Seligson M., De Soysa Y., Cahan P., Theißen J., et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 2016;535:246–251. doi: 10.1038/nature18632. PubMed DOI PMC

Viswanathan S.R., Daley G.Q., Gregory R.I. Selective Blockade of MicroRNA Processing by Lin28. Science. 2008;320:97–100. doi: 10.1126/science.1154040. PubMed DOI PMC

Rickman D.S., Schulte J.H., Eilers M. The Expanding World of N-MYC–Driven Tumors. Cancer Discov. 2018;8:150–163. doi: 10.1158/2159-8290.CD-17-0273. PubMed DOI

Stanke M., Duong C.V., Pape M., Geissen M., Burbach G., Deller T., Parlato R., Schütz G., Development H.R., Duong C.V., et al. Target-dependent specification of the neurotransmitter phenotype: Cholinergic differentiation of sympathetic neurons is mediated in vivo by gp130 signaling. Development. 2006;133:141–150. doi: 10.1242/dev.02189. PubMed DOI

Molenaar J.J., Domingo-Fernández R., Ebus M.E., Lindner S., Koster J., Drabek K., Mestdagh P., Van Sluis P., Valentijn L.J., Van Nes J., et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat. Genet. 2012;44:1199–1208. doi: 10.1038/ng.2436. PubMed DOI

Nguyen L.H., Robinton D.A., Seligson M.T., Wu L., Li L., Rakheja D., Comerford S.A., Ramezani S., Sun X., Parikh M.S., et al. Article Lin28b Is Sufficient to Drive Liver Cancer and Necessary for Its Maintenance in Murine Models. Cancer Cell. 2014;26:248–261. doi: 10.1016/j.ccr.2014.06.018. PubMed DOI PMC

Urbach A., Yermalovich A., Zhang J., Spina C.S., Zhu H., Perez-atayde A.R., Shukrun R., Charlton J., Sebire N., Mifsud W., et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 2014;28:971–982. doi: 10.1101/gad.237149.113. PubMed DOI PMC

Gu L., Zhang H., He J., Li J., Huang M., Zhou M. MDM2 regulates MYCN mRNA stabilization and translation in human neuroblastoma cells. Oncogene. 2012;31:1342–1353. doi: 10.1038/onc.2011.343. PubMed DOI PMC

He J., Gu L., Zhang H., Zhou M. Crosstalk between MYCN and MDM2-p53 signal pathways regulates tumor cell growth and apoptosis in neuroblastoma. Cell Cycle. 2011;10:2994–3002. doi: 10.4161/cc.10.17.17118. PubMed DOI PMC

Slack A., Chen Z., Tonelli R., Pule M., Hunt L., Pession A., Shohet J.M. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc. Natl. Acad. Sci. USA. 2005;102:731–736. doi: 10.1073/pnas.0405495102. PubMed DOI PMC

Agarwal S., Milazzo G., Rajapakshe K., Bernardi R., Chen Z., Barberi E., Koster J., Perini G., Coarfa C., Shohet J.M. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget. 2018;9:20323–20338. doi: 10.18632/oncotarget.24859. PubMed DOI PMC

Horvilleur E., Bauer M., Goldschneider D., Mergui X., De la motte A., Bénard J., Douc-rasy S., Cappellen D. p73α isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Res. 2008;36:4222–4232. doi: 10.1093/nar/gkn394. PubMed DOI PMC

Liu Z., Chen S.S., Clarke S., Veschi V., Thiele C.J. Targeting MYCN in Pediatric and Adult Cancers. Front. Oncol. 2021;10:623679. doi: 10.3389/fonc.2020.623679. PubMed DOI PMC

Clausen D.M., Guo J., Parise R.A., Beumer J.H., Egorin M.J., Lazo J.S., Prochownik E.V., Eiseman J.L. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization. J. Pharmacol. Exp. Ther. 2010;335:715–727. doi: 10.1124/jpet.110.170555. PubMed DOI PMC

Johnsen J.I., Dyberg C., Fransson S., Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol. Res. 2018;131:164–176. doi: 10.1016/j.phrs.2018.02.023. PubMed DOI

DuBois S.G., Marachelian A., Fox E., Kudgus R.A., Reid J.M., Groshen S., Malvar J., Bagatell R., Wagner L., Maris J.M., et al. Phase I study of the Aurora A kinase inhibitor Alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: A NANT (new approaches to neuroblastoma therapy) trial. J. Clin. Oncol. 2016;34:1368–1375. doi: 10.1200/JCO.2015.65.4889. PubMed DOI PMC

Zafar A., Wang W., Liu G., Wang X., Xian W., McKeon F., Foster J., Zhou J., Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med. Res. Rev. 2021;41:961–1021. doi: 10.1002/med.21750. PubMed DOI PMC

Smith J.R., Moreno L., Heaton S.P., Chesler L., Pearson A.D.J., Garrett M.D. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol. Oncol. 2016;10:538–552. doi: 10.1016/j.molonc.2015.11.005. PubMed DOI PMC

Hassan B., Akcakanat A., Holder A.M., Meric-Bernstam F. Targeting the PI3-kinase/Akt/mTOR Signaling Pathway. Surg. Oncol. Clin. N. Am. 2013;22:641–664. doi: 10.1016/j.soc.2013.06.008. PubMed DOI PMC

Saliminejad K., Khorram Khorshid H.R., Soleymani Fard S., Ghaffari S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019;234:5451–5465. doi: 10.1002/jcp.27486. PubMed DOI

Ambros V., Bartel B., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-jones S.M., Marshall M., et al. A uniform system for microRNA annotation. RNA. 2003;9:277–279. doi: 10.1261/rna.2183803. PubMed DOI PMC

Li M., Li J., Ding X., He M., Cheng S.Y. MicroRNA and cancer. AAPS J. 2010;12:309–317. doi: 10.1208/s12248-010-9194-0. PubMed DOI PMC

Bhaskaran M., Mohan M. MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Vet. Pathol. 2014;51:759–774. doi: 10.1177/0300985813502820. PubMed DOI PMC

Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:140–144. doi: 10.1093/nar/gkj112. PubMed DOI PMC

Griffiths-Jones S., Saini H.K., Van Dongen S., Enright A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008;36:154–158. doi: 10.1093/nar/gkm952. PubMed DOI PMC

Syeda Z.A., Langden S.S.S., Munkhzul C., Lee M., Song S.J. Regulatory mechanism of microrna expression in cancer. Int. J. Mol. Sci. 2020;21:1723. doi: 10.3390/ijms21051723. PubMed DOI PMC

Pajares M.J., Alemany-cosme E., Goñi S., Bandres E., Palanca-Ballester C., Sandoval J. Epigenetic regulation of microRNAs in cancer: Shortening the distance from bench to bedside. Int. J. Mol. Sci. 2021;22:7350. doi: 10.3390/ijms22147350. PubMed DOI PMC

Logotheti S., Marquardt S., Putzer B.M. p73-Governed miRNA Networks: Translating Bioinformatics Approaches to Therapeutic Solutions for Cancer Metastasis. In: Lai X., Gupta S.K., Vera J., editors. Computational Biology of Non-Coding RNA: Methods and Protocols. Volume 1912. Humana Press; New York, NY, USA: 2019. pp. 33–52. PubMed

Liu J., Zhang C., Zhao Y., Feng Z. MicroRNA Control of p53. J. Cell. Biochem. 2017;118:7–14. doi: 10.1002/jcb.25609. PubMed DOI

Veeraraghavan V.P., Jayaraman S., Rengasamy G., Mony U., Ganapathy D.M., Geetha R.V., Sekar D. Deciphering the role of micrornas in neuroblastoma. Molecules. 2022;27:99. doi: 10.3390/molecules27010099. PubMed DOI PMC

Galardi A., Colletti M., Businaro P., Quintarelli C., Locatelli F., Di Giannatale A. MicroRNAs in Neuroblastoma: Biomarkers with Therapeutic Potential. Curr. Med. Chem. 2017;25:584–600. doi: 10.2174/0929867324666171003120335. PubMed DOI

Tivnan A., Orr W.S., Gubala V., Nooney R., Williams D.E., McDonagh C., Prenter S., Harvey H., Domingo-Fernández R., Bray I.M., et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS ONE. 2012;7:e38129. doi: 10.1371/journal.pone.0038129. PubMed DOI PMC

Boominathan L. The Tumor Suppressors p53, p63, and p73 Are Regulators of MicroRNA Processing Complex. PLoS ONE. 2010;5:e10615. doi: 10.1371/journal.pone.0010615. PubMed DOI PMC

Boominathan L. Tumor suppressors p53, p63, and p73 inhibit migrating cancer stem cells by increasing the expression of stem cell suppressing miRNAs. Cell. 2010;1:1–20. doi: 10.1038/npre.2010.4385.1. DOI

Madrigal T., Hernández-Monge J., Herrera L.A., González-De la Rosa C.H., Domínguez-Gómez G., Candelaria M., Luna-Maldonado F., Calderón González K.G., Díaz-Chávez J. Regulation of miRNAs Expression by Mutant p53 Gain of Function in Cancer. Front. Cell Dev. Biol. 2021;9:695723. doi: 10.3389/fcell.2021.695723. PubMed DOI PMC

Li X.L., Jones M.F., Subramanian M., Lal A. Mutant p53 exerts oncogenic effects through microRNAs and their target gene networks. FEBS Lett. 2014;588:2610–2615. doi: 10.1016/j.febslet.2014.03.054. PubMed DOI PMC

Chen X., Buhe B., Hongtime L., Chuanmin Y., Xiwei H., Hong Z., Lulu H., Qian D., Renjie W. MicroRNA-15a promotes neuroblastoma migration by targeting reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and regulating matrix metalloproteinase-9 expression. FEBS J. 2013;280:855–866. doi: 10.1111/febs.12074. PubMed DOI

Wang Z., Yao W., Li K., Zheng N., Zheng C., Zhao X., Zheng S. Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via PTEN/PDCD4. Oncol. Lett. 2017;13:4727–4733. doi: 10.3892/ol.2017.6052. PubMed DOI PMC

Cheng L., Yang T., Kuang Y., Kong B., Yu S., Shu H., Zhou H., Gu J. MicroRNA-23a promotes neuroblastoma cell metastasis by targeting CDH1. Oncol. Lett. 2014;7:839–845. doi: 10.3892/ol.2014.1794. PubMed DOI PMC

He X.Y., Tan Z.L., Mou Q., Liu F.J., Liu S., Yu C.W., Zhu J., Lv L.Y., Zhang J., Wang S., et al. microRNA-221 enhances MYCN via targeting nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma. Clin. Cancer Res. 2017;23:2905–2918. doi: 10.1158/1078-0432.CCR-16-1591. PubMed DOI

Swarbrick A., Woods S.L., Shaw A., Phua Y., Nguyen A., Chanthery Y., Lim L., Lesley J., Judson R.L., Huskey N., et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN amplified neuroblastoma. Nat. Med. 2011;16:1134–1140. doi: 10.1038/nm.2227. PubMed DOI PMC

Qu H., Zheng L., Pu J., Mei H., Xiang X., Zhao X., Li D., Li S., Mao L., Huang K., et al. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum. Mol. Genet. 2015;24:2539–2551. doi: 10.1093/hmg/ddv018. PubMed DOI

Li Z., Xu Z., Xie Q., Gao W., Xie J., Zhou L. miR-1303 promotes the proliferation of neuroblastoma cell SH-SY5Y by targeting GSK3β and SFRP1. Biomed. Pharmacother. 2016;83:508–513. doi: 10.1016/j.biopha.2016.07.010. PubMed DOI

Ye W., Liang F., Ying C., Zhang M., Feng D., Jiang X. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp. Ther. Med. 2019;18:3729–3736. doi: 10.3892/etm.2019.8007. PubMed DOI PMC

Zhang H., Qi M., Li S., Qi T., Mei H., Huang K., Zheng L., Tong Q. MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol. Cancer Ther. 2012;11:1454–1466. doi: 10.1158/1535-7163.MCT-12-0001. PubMed DOI

Chava S., Reynolds C.P., Pathania A.S., Gorantla S., Poluektova L.Y., Couldter D.W., Gupta S.C., Pandey M.K., Challagundia K.B. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol. Oncol. 2019;14:180–196. doi: 10.1002/1878-0261.12588. PubMed DOI PMC

De Antonellis P., Carotenuto M., Vandenbussche J., De Vita G., Ferrucci V., Medaglia C., Boffa I., Galiero A., Di Somma S., Magliulo D., et al. Early targets of miR-34a in neuroblastoma. Mol. Cell. Proteom. 2014;13:2114–2131. doi: 10.1074/mcp.M113.035808. PubMed DOI PMC

Agostini M., Tucci P., Killick R., Candi E., Sayan B.S., Di Val Cervo P.R., Nicoterad P., McKeon F., Knight R.A., Mak T.W., et al. Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc. Natl. Acad. Sci. USA. 2011;108:21093–21098. doi: 10.1073/pnas.1112061109. PubMed DOI PMC

Feinberg-Gorenshtein G., Guedj A., Shichrur K., Jeison M., Luria D., Kodman Y., Ash S., Feinmesser M., Edry L., Shomron N., et al. miR-192 directly binds and regulates Dicer1 expression in neuroblastoma. PLoS ONE. 2013;8:e78713. doi: 10.1371/journal.pone.0078713. PubMed DOI PMC

Zhao D., Tian Y., Li P., Wang L., Xiao A., Zhang M., Shi T. MicroRNA-203 inhibits the malignant progression of neuroblastoma by targeting Sam68. Mol. Med. Rep. 2015;12:5554–5560. doi: 10.3892/mmr.2015.4013. PubMed DOI

Chen X., Pan M., Han L., Lu H., Hao X., Dong Q. miR-338-3p suppresses neuroblastoma proliferation invasion and migration through targeting PREX2a. FEBS Lett. 2013;587:3729–3737. doi: 10.1016/j.febslet.2013.09.044. PubMed DOI

Wu T., Lin Y., Xie Z. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biol. Res. 2018;51:13. doi: 10.1186/s40659-018-0162-y. PubMed DOI PMC

Afanasyeva E.A., Mestdagh P., Kumps C., Vandesompele J., Ehemann V., Theissen J., Fischer M., Zapatka M., Brors B., Savelyeva L., et al. MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ. 2011;18:974–984. doi: 10.1038/cdd.2010.164. PubMed DOI PMC

Guglielmi L., Cinnella C., Nardella M., Maresca G., Valentini A., Mercanti D., Felsani A., D’Agnano I. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death Dis. 2014;5:e1081. doi: 10.1038/cddis.2014.42. PubMed DOI PMC

Slabáková E., Culig Z., Remšík J., Souček K. Alternative mechanisms of MIR-34a regulation in cancer. Cell Death Dis. 2017;8:e3100. doi: 10.1038/cddis.2017.495. PubMed DOI PMC

Rihani A., Van Goethem A., Ongenaert M., De Brouwer S., Volders P.J., Agarwal S., De Preter K., Mestdagh P., Shohet J., Speleman F., et al. Genome wide expression profiling of p53 regulated miRNAs in neuroblastoma. Sci. Rep. 2015;5:9027. doi: 10.1038/srep09027. PubMed DOI PMC

Le M.T.N., Teh C., Shyh-Chang N., Xie H., Zhou B., Korzh V., Lodish H.F., Lim B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23:862–876. doi: 10.1101/gad.1767609. PubMed DOI PMC

Cai Q., Zeng S., Dai X., Wu J., Ma W. MiR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1. Oncol. Rep. 2017;38:2993–3000. doi: 10.3892/or.2017.5983. PubMed DOI

Irwin M.S., Naranjo A., Zhang F.F., Cohn S.L., London W.B., Gastier-Foster J.M., Ramirez N.C., Pfau R., Reshmi S., Wagner E., et al. Revised Neuroblastoma Risk Classification System: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2021;39:3229–3241. doi: 10.1200/JCO.21.00278. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...