Deciphering the Role of p53 and TAp73 in Neuroblastoma: From Pathogenesis to Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
UID/QUI/50006/2020
Fundação para a Ciência e Tecnologia
PubMed
36551697
PubMed Central
PMC9777536
DOI
10.3390/cancers14246212
PII: cancers14246212
Knihovny.cz E-zdroje
- Klíčová slova
- N-MYC, miRNAs, neuroblastoma, p53 family proteins, targeted anticancer therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies.
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Batlle E., Clevers H. Cancer stem cells revisited. Nat. Med. 2017;23:1124–1134. doi: 10.1038/nm.4409. PubMed DOI
Shi X., Wang Y., Zhang L., Zhao W., Dai X., Yang Y.-G., Zhang X. Targeting bromodomain and extra-terminal proteins to inhibit neuroblastoma tumorigenesis through regulating MYCN. Front. Cell Dev. Biol. 2022;10:1021820. doi: 10.3389/fcell.2022.1021820. PubMed DOI PMC
Newman E.A., Abdessalam S., Aldrink J.H., Austin M., Heaton T.E., Bruny J., Ehrlich P., Dasgupta R., Baertschiger R.M., Lautz T.B., et al. Update on neuroblastoma. J. Pediatr. Surg. 2019;54:383–389. doi: 10.1016/j.jpedsurg.2018.09.004. PubMed DOI
Kameneva P., Artemov A.V., Kastriti M.E., Faure L., Olsen T.K., Otte J., Erickson A., Semsch B., Andersson E.R., Ratz M., et al. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat. Genet. 2021;53:694–706. doi: 10.1038/s41588-021-00818-x. PubMed DOI PMC
Jansky S., Sharma A.K., Körber V., Quintero A., Toprak U.H., Wecht E.M., Gartlgruber M., Greco A., Chomsky E., Grünewald T.G.P., et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat. Genet. 2021;53:683–693. doi: 10.1038/s41588-021-00806-1. PubMed DOI
Kastriti M.E., Faure L., Von Ahsen D., Bouderlique T.G., Boström J., Solovieva T., Jackson C., Bronner M., Meijer D., Hadjab S., et al. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J. 2022;41:e108780. doi: 10.15252/embj.2021108780. PubMed DOI PMC
Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. Nat. Rev. Dis. Prim. 2016;2:16078. doi: 10.1038/nrdp.2016.78. PubMed DOI
Lundberg K.I., Treis D., Johnsen J.I. Neuroblastoma Heterogeneity, Plasticity, and Emerging Therapies. Curr. Oncol. Rep. 2022;24:1053–1062. doi: 10.1007/s11912-022-01270-8. PubMed DOI PMC
Nicolai S., Pieraccioli M., Peschiaroli A., Melino G., Raschellà G. Neuroblastoma: Oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis. 2015;6:e2010. doi: 10.1038/cddis.2015.354. PubMed DOI PMC
Nakagawara A., Li Y., Izumi H., Muramori K., Inada H., Nishi M. Neuroblastoma. Jpn. J. Clin. Oncol. 2018;48:214–241. doi: 10.1093/jjco/hyx176. PubMed DOI
Park J.R., Eggert A., Caron H. Neuroblastoma: Biology, Prognosis, and Treatment. Hematol. Oncol. Clin. N. Am. 2010;24:65–86. doi: 10.1016/j.hoc.2009.11.011. PubMed DOI
Bresler S.C., Weiser D.A., Huwe P.J., Park J.H., Krytska K., Ryles H., Laudenslager M., Rappaport E.F., Wood A.C., McGrady P.W., et al. ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma. Cancer Cell. 2014;26:682–694. doi: 10.1016/j.ccell.2014.09.019. PubMed DOI PMC
Mossé Y.P., Laudenslager M., Longo L., Cole K.A., Wood A., Attiyeh E.F., Laquaglia M.J., Sennett R., Lynch J.E., Perri P., et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–935. doi: 10.1038/nature07261. PubMed DOI PMC
Janoueix-Lerosey I., Lequin D., Brugières L., Ribeiro A., De Pontual L., Combaret V., Raynal V., Puisieux A., Schleiermacher G., Pierron G., et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–970. doi: 10.1038/nature07398. PubMed DOI
Liu Z., Thiele C.J. Molecular Genetics of Neuroblastoma. In: Pacak K., Taïeb D., editors. Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Humana Press; Totowaa, NJ, USA: 2017. pp. 83–125.
Kameneva P., Kastriti M.E., Adameyko I. Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cell. Mol. Life Sci. 2021;78:513–529. doi: 10.1007/s00018-020-03609-5. PubMed DOI PMC
Mosse Y.P., Laudenslager M., Khazi D., Carlisle A.J., Winter C.L., Rappaport E., Maris J.M. Germline PHOX2B Mutation in Hereditary Neuroblastoma. Am. J. Hum. Genet. 2004;75:727–730. doi: 10.1086/424530. PubMed DOI PMC
Trochet D., Bourdeaut F., Janoueix-Lerosey I., Deville A., De Pontual L., Schleiermacher G., Coze C., Philip N., Frébourg T., Munnich A., et al. Germline Mutations of the Paired-Like Homeobox 2B (PHOX2B) Gene in Neuroblastoma. Am. J. Hum. Genet. 2004;74:761–764. doi: 10.1086/383253. PubMed DOI PMC
Valentijn L.J., Koster J., Zwijnenburg D.A., Hasselt N.E., Van Sluis P., Volckmann R., Van Noesel M.M., George R.E., Tytgat G.A.M., Molenaar J.J., et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 2015;47:1411–1414. doi: 10.1038/ng.3438. PubMed DOI
Brodeur G.M., Minturn J.E., Ho R., Simpson A.M., Iyer R., Varela C.R., Light J.E., Kolla V., Evans A.E. Trk receptor expression and inhibition in neuroblastomas. Clin. Cancer Res. 2009;15:3244–3250. doi: 10.1158/1078-0432.CCR-08-1815. PubMed DOI PMC
Carén H., Kryh H., Nethander M., Sjöberg R.M., Träger C., Nilsson S., Abrahamsson J., Kogner P., Martinsson T. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc. Natl. Acad. Sci. USA. 2010;107:4323–4328. doi: 10.1073/pnas.0910684107. PubMed DOI PMC
J Ribelles A., Barberá S., Yáñez Y., Gargallo P., Segura V., Juan B., Noguera R., Piqueras M., Fornés-Ferrer V., de Mora J.F., et al. Clinical Features of Neuroblastoma With 11q Deletion: An Increase in Relapse Probabilities In Localized And 4S Stages. Sci. Rep. 2019;9:13806. doi: 10.1038/s41598-019-50327-5. PubMed DOI PMC
Hogarty M.D., Liu X., Guo C., Thompson P.M., Weiss M.J., White P.S., Sulman E.P., Brodeur G.M., Maris J.M. Identification of a 1-megabase consensus region of deletion at 1p36.3 in Primary neuroblastomas. Med. Pediatr. Oncol. 2000;35:512–515. doi: 10.1002/1096-911X(20001201)35:6<512::AID-MPO2>3.0.CO;2-D. PubMed DOI
Ichimiya S., Nimura Y., Kageyama H., Takada N., Sunahara M., Shishikura T., Nakamura Y., Sakiyama S., Seki N., Ohira M., et al. P73 At Chromosome 1P36.3 Is Lost in Advanced Stage Neuroblastoma But Its Mutation Is Infrequent. Oncogene. 1999;18:1061–1066. doi: 10.1038/sj.onc.1202390. PubMed DOI
Collavin L., Lunardi A., Del Sal G. P53-family proteins and their regulators: Hubs and spokes in tumor suppression. Cell Death Differ. 2010;17:901–911. doi: 10.1038/cdd.2010.35. PubMed DOI
Ramos H., Raimundo L., Saraiva L. p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol. Res. 2020;162:105245. doi: 10.1016/j.phrs.2020.105245. PubMed DOI
Wang C., Teo C.R., Sabapathy K. P53-related transcription targets of TAp73 in cancer cells—Bona fide or distorted reality? Int. J. Mol. Sci. 2020;21:1346. doi: 10.3390/ijms21041346. PubMed DOI PMC
Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C., et al. P63 Is Essential for Regenerative Proliferation in Limb, Craniofacial and Epithelial Development. Nature. 1999;398:714–718. doi: 10.1038/19539. PubMed DOI
Yang A., Walker N., Bronson R., Kaghad M., Oosterwegel M., Bonnin J., Vagner C., Bonnet H., Dikkesk P., Sharpe A., et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature. 2000;404:99–103. doi: 10.1038/35003607. PubMed DOI
Wei J., Zaika E., Zaika A. P53 family: Role of protein isoforms in human cancer. J. Nucleic Acids. 2012;2012:687359. doi: 10.1155/2012/687359. PubMed DOI PMC
Dötsch V., Bernassola F., Coutandin D., Candi E., Melino G. P63 and P73, the Ancestors of P53. Cold Spring Harb. Perspect. Biol. 2010;2:a004887. doi: 10.1101/cshperspect.a004887. PubMed DOI PMC
Stiewe T. The p53 family in differentiation and tumorigenesis. Nat. Rev. Cancer. 2007;7:165–168. doi: 10.1038/nrc2072. PubMed DOI
Vousden K.H., Lane D.P. P53 in Health and Disease. Nat. Rev. Mol. Cell Biol. 2007;8:275–283. doi: 10.1038/nrm2147. PubMed DOI
Machado-Silva A., Perrier S., Bourdon J.C. P53 family members in cancer diagnosis and treatment. Semin. Cancer Biol. 2010;20:57–62. doi: 10.1016/j.semcancer.2010.02.005. PubMed DOI
Ichimiya S., Nakagawara A., Sakuma Y., Kimura S., Ikeda T., Satoh M., Takahashi N., Sato N., Mori M. p73: Structure and function. Pathol. Int. 2000;50:589–593. doi: 10.1046/j.1440-1827.2000.01090.x. PubMed DOI
De Laurenzi V., Raschellá G., Barcaroli D., Annicchiarico-Petruzzelli M., Ranalli M., Catani M.V., Tanno B., Costanzo A., Levrero M., Melino G. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J. Biol. Chem. 2000;275:15226–15231. doi: 10.1074/jbc.275.20.15226. PubMed DOI
Wagner L.M., Danks M.K. New therapeutic targets for the treatment of high-risk neuroblastoma. J. Cell. Biochem. 2009;107:46–57. doi: 10.1002/jcb.22094. PubMed DOI
Vogan K., Bernstein M., Leclerc J.M., Brisson L., Brossard J., Brodeur G.M., Pelletier J., Gros P. Absence of p53 Gene Mutations in Primary Neuroblastomas. Cancer Res. 1993;53:5269–5273. PubMed
Zhu X., Wimmer K., Kuick R., Lamb B.J., Motyka S., Jasty R., Castle V.P., Hanash S.M. N-myc modulates expression of p73 in neuroblastoma. Neoplasia. 2002;4:432–439. doi: 10.1038/sj.neo.7900255. PubMed DOI PMC
Ikawa S., Nakagawara A., Ikawa Y. p53 family genes: Structural comparison, expression and mutation. Cell Death Differ. 1999;6:1154–1161. doi: 10.1038/sj.cdd.4400631. PubMed DOI
Inomistova M.V., Svergun N.M., Khranovska N.M., Skachkova O.V., Gorbach O.I., Klymnyuk G.I. Prognostic significance of MDM2 gene expression in childhood neuroblastoma. Exp. Oncol. 2015;37:111–115. doi: 10.31768/2312-8852.2015.37(2):111-115. PubMed DOI
Berberich S.J. Sub-Cellular Biochemistry. Volume 85. Springer; Dordrecht, The Netherlands: 2014. Mdm2 and MdmX involvement in human cancer; pp. 263–280. PubMed
Corvi R., Savelyeva L., Breit S., Wenzel A., Handgretinger R., Barak J., Oren M., Amler L., Schwab M. Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene. 1995;10:1081–1086. PubMed
Rayburn E., Zhang R., He J., Wang H. MDM2 and human malignancies: Expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr. Cancer Drug Targets. 2005;5:27–41. doi: 10.2174/1568009053332636. PubMed DOI
Zafar A., Wang W., Liu G., Xian W., McKeon F., Zhou J., Zhang R. Targeting the p53-MDM2 pathway for neuroblastoma therapy: Rays of hope. Cancer Lett. 2021;496:16–29. doi: 10.1016/j.canlet.2020.09.023. PubMed DOI PMC
Wade M., Li Y.C., Wahl G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer. 2013;13:83–96. doi: 10.1038/nrc3430. PubMed DOI PMC
Karni-Schmidt O., Lokshin M., Prives C. The Roles of MDM2 and MDMX in Cancer. Annu. Rev. Pathol. Mech. Dis. 2016;11:617–644. doi: 10.1146/annurev-pathol-012414-040349. PubMed DOI PMC
Bálint E., Bates S., Vousden K.H. Mdm2 binds p73α without targeting degradation. Oncogene. 1999;18:3923–3929. doi: 10.1038/sj.onc.1202781. PubMed DOI
Dobbelstein M., Wienzek S., König C., Roth J. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene. 1999;18:2101–2106. doi: 10.1038/sj.onc.1202512. PubMed DOI
Wu H., Leng R.P. MDM2 mediates p73 ubiquitination: A new molecular mechanism for suppression of p73 function. Oncotarget. 2015;6:21479–21492. doi: 10.18632/oncotarget.4086. PubMed DOI PMC
Gu J., Nie L., Wiederschain D., Yuan Z.-M. Identification of p53 Sequence Elements That Are Required for MDM2-Mediated Nuclear Export. Mol. Cell. Biol. 2001;21:8533–8546. doi: 10.1128/MCB.21.24.8533-8546.2001. PubMed DOI PMC
Shi Y., Takenobu H., Kurata K., Yamaguchi Y., Yanagisawa R., Ohira M., Koike K., Nakagawara A., Jiang L.L., Kamijo T. HDM2 impairs Noxa transcription and affects apoptotic cell death in a p53/p73-dependent manner in neuroblastoma. Eur. J. Cancer. 2010;46:2324–2334. doi: 10.1016/j.ejca.2010.05.026. PubMed DOI
Barbieri E., Mehta P., Chen Z., Zhang L., Slack A., Berg S., Shohet J.M. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol. Cancer Ther. 2006;5:2358–2365. doi: 10.1158/1535-7163.MCT-06-0305. PubMed DOI
Van Maerken T., Speleman F., Vermeulen J., Lambertz I., De Clercq S., De Smet E., Yigit N., Coppens V., Philippé J., De Paepe A., et al. Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res. 2006;66:9646–9655. doi: 10.1158/0008-5472.CAN-06-0792. PubMed DOI
Gamble L.D., Kees U.R., Tweddle D.A., Lunec J. MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63. Oncogene. 2012;31:752–763. doi: 10.1038/onc.2011.270. PubMed DOI PMC
Kung C.P., Weber J.D. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front. Cell Dev. Biol. 2022;10:818744. doi: 10.3389/fcell.2022.818744. PubMed DOI PMC
Van Maerken T., Vandesompele J., Rihani A., De Paepe A., Speleman F. Escape from p53-mediated tumor surveillance in neuroblastoma: Switching off the p14ARF-MDM2-p53 axis. Cell Death Differ. 2009;16:1563–1572. doi: 10.1038/cdd.2009.138. PubMed DOI
Carr-Wilkinson J., O’Toole K., Wood K.M., Challen C.C., Baker A.G., Board J.R., Evans L., Cole M., Cheung N.K.V., Boos J., et al. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin. Cancer Res. 2010;16:1108–1118. doi: 10.1158/1078-0432.CCR-09-1865. PubMed DOI PMC
Gomes A.S., Ramos H., Inga A., Sousa E., Saraiva L. Structural and drug targeting insights on mutant p53. Cancers. 2021;13:3344. doi: 10.3390/cancers13133344. PubMed DOI PMC
Muller P.A.J., Vousden K.H. P53 mutations in cancer. Nat. Cell Biol. 2013;15:2–8. doi: 10.1038/ncb2641. PubMed DOI
Bargonetti J., Reynisdottir I., Friedman P.N., Prives C. Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev. 1992;6:1886–1898. doi: 10.1101/gad.6.10.1886. PubMed DOI
Kern S.E., Pietenpol J.A., Thiagalingam S., Seymour A., Kinzler K.W., Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992;256:827–830. doi: 10.1126/science.256.5058.827. PubMed DOI
Gaiddon C., Lokshin M., Ahn J., Zhang T., Prives C. A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Mol. Cell. Biol. 2001;21:1874–1887. doi: 10.1128/MCB.21.5.1874-1887.2001. PubMed DOI PMC
Di Agostino S., Cortese G., Monti O., Dell’Orso S., Sacchi A., Eisenstein M., Citro G., Strano S., Blandino G. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle. 2008;7:3440–3447. doi: 10.4161/cc.7.21.6995. PubMed DOI
Schulz-Heddergott R., Moll U.M. Gain-of-function (GOF) mutant p53 as actionable therapeutic target. Cancers. 2018;10:188. doi: 10.3390/cancers10060188. PubMed DOI PMC
Di Agostino S. The impact of mutant p53 in the non-coding RNA world. Biomolecules. 2020;10:472. doi: 10.3390/biom10030472. PubMed DOI PMC
Dong P., Karaayvaz M., Jia N., Kaneuchi M., Hamada J., Watari H., Sudo S., Ju J., Sakuragi N. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013;32:3286–3295. doi: 10.1038/onc.2012.334. PubMed DOI PMC
Neilsen P.M., Noll J.E., Mattiske S., Bracken C.P., Gregory P.A., Schulz R.B., Lim S.P., Kumar R., Suetani R.J., Goodall G.J., et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene. 2013;32:2992–3000. doi: 10.1038/onc.2012.305. PubMed DOI
Marin M.C., Jost C.A., Brooks L.A., Irwin M.S., O’Nions J., Tidy J.A., James N., McGregor J.M., Harwood C.A., Yulug I.G., et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 2000;25:47–54. doi: 10.1038/75586. PubMed DOI
Bergamaschi D., Gasco M., Hiller L., Sullivan A., Syed N., Trigiante G., Yulug I., Merlano M., Numico G., Comino A., et al. P53 Polymorphism Influences Response in Cancer Chemotherapy Via Modulation of P73-Dependent Apoptosis. Cancer Cell. 2003;3:387–402. doi: 10.1016/S1535-6108(03)00079-5. PubMed DOI
Irwin M.S., Kondo K., Marin M.C., Cheng L.S., Hahn W.C., Kaelin W.G. Chemosensitivity linked to p73 function. Cancer Cell. 2003;3:403–410. doi: 10.1016/S1535-6108(03)00078-3. PubMed DOI
Hosoi G., Hara J., Okamura T., Osugi Y., Fukuzawa M., Okada A., Tawa A. Low frequency of the p53 gene mutations in neuroblastoma. Cancer. 1994;73:3087–3093. doi: 10.1002/1097-0142(19940615)73:12<3087::AID-CNCR2820731230>3.0.CO;2-9. PubMed DOI
Davidoff A.M., Pence J.C., Shorter N.A., Iglehart J.D., Marks J.R. Expression of p53 in human neuroblastoma- and neuroepithelioma-derived cell lines. Oncogene. 1992;7:127–133. PubMed
Keshelava N., Zuo J.J., Sitara Waidyaratne N., Triche T.J., Patrick Reynolds C. p53 Mutations and loss of p53 function confer multidrug resistance in neuroblastoma. Med. Pediatr. Oncol. 2000;35:563–568. doi: 10.1002/1096-911X(20001201)35:6<563::AID-MPO15>3.0.CO;2-J. PubMed DOI
Keshelava N., Zuo J.J., Chen P., Waidyaratne S.N., Luna M.C., Gomer C.J., Triche T.J., Reynolds C.P., Keshelava N., Zuo J.J., et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res. 2001;61:6185–6193. PubMed
Imamura J., Bartram C.R., Berthold F., Harms D., Nakamura H., Koeffler H.P. Mutation of the p53 Gene in Neuroblastoma and Its Relationship with N-myc Amplification. Cancer Res. 1993;53:4053–4058. PubMed
Manhani R., Cristofani L.M., Filho V.O., Bendit I. Concomitant p53 mutation and MYCN amplification if neuroblastoma. Med. Pediatr. Oncol. 1997;29:206–207. doi: 10.1002/(SICI)1096-911X(199709)29:3<206::AID-MPO7>3.0.CO;2-H. PubMed DOI
Tweddle D.A., Malcolm A.J., Bown N., Pearson A.D.J., Lunec J. Evidence for the Development of p53 Mutations after Cytotoxic Therapy in a Neuroblastoma Cell Line. Cancer Res. 2001;61:8–13. PubMed
Maris J.M., Matthay K.K. Molecular biology of neuroblastoma. J. Clin. Oncol. 1999;17:2264–2279. doi: 10.1200/JCO.1999.17.7.2264. PubMed DOI
Kravchenko J.E., Ilyinskaya G.V., Komarov P.G., Agapova L.S., Kochetkov D.V., Strom E., Frolova E.I., Kovriga I., Gudkov A.V., Feinstein E., et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl. Acad. Sci. USA. 2008;105:6302–6307. doi: 10.1073/pnas.0802091105. PubMed DOI PMC
Muller P.A.J., Vousden K.H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 2014;25:304–317. doi: 10.1016/j.ccr.2014.01.021. PubMed DOI PMC
Gomes S., Raimundo L., Soares J., Loureiro J.B., Leão M., Ramos H., Monteiro M.N., Lemos A., Moreira J., Pinto M., et al. New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Lett. 2019;446:90–102. doi: 10.1016/j.canlet.2019.01.014. PubMed DOI
Tomasini R., Tsuchihara K., Wilhelm M., Fujitani M., Rufini A., Cheung C.C., Khan F., Itie-Youten A., Wakeham A., Tsao M.S., et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008;22:2677–2691. doi: 10.1101/gad.1695308. PubMed DOI PMC
Casciano I., Mazzocco K., Boni L., Pagnan G., Banelli B., Allemanni G., Ponzoni M., Tonini G.P., Romani M. Expression of ΔNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ. 2002;9:246–251. doi: 10.1038/sj.cdd.4400993. PubMed DOI
Wolter J., Angelini P., Irwin M. p53 family: Therapeutic targets in neuroblastoma. Futur. Oncol. 2010;6:429–444. doi: 10.2217/fon.09.176. PubMed DOI
Romani M., Tonini G.P., Banelli B., Allemanni G., Mazzocco K., Scaruffi P., Boni L., Ponzoni M., Pagnan G., Raffaghello L., et al. Biological and clinical role of p73 in neuroblastoma. Cancer Lett. 2003;197:111–117. doi: 10.1016/S0304-3835(03)00092-2. PubMed DOI
Rufini A., Agostini M., Grespi F., Tomasini R., Sayan B.S., Niklison-Chirou M.V., Conforti F., Velletri T., Mastino A., Mak T.W., et al. P73 in cancer. Genes Cancer. 2011;2:491–502. doi: 10.1177/1947601911408890. PubMed DOI PMC
Martinez-Delgado B., Melendez B., Cuadros M., Garcia M.J., Nomdedeu J., Rivas C., Fernandez-Piqueras J., Benítez J. Frequent inactivation of the p73 gene by abnormal methylation or LOH in Non-Hodgkin’s Lymphomas. Int. J. Cancer. 2002;102:15–19. doi: 10.1002/ijc.10618. PubMed DOI
Banelli B., Casciano I., Romani M. Methylation-independent silencing of the p73 gene in neuroblastoma. Oncogene. 2000;19:4553–4556. doi: 10.1038/sj.onc.1203807. PubMed DOI
Pozniak C.D., Radinovic S., Yang A., McKeon F., Kaplan D.R., Miller F.D. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science. 2000;289:304–306. doi: 10.1126/science.289.5477.304. PubMed DOI
Wilhelm M.T., Rufini A., Wetzel M.K., Tsuchihara K., Inoue S., Tomasini R., Itie-Youten A., Wakeham A., Arsenian-Henriksson M., Melino G., et al. Isoform-specific p73 knockout mice reveal a novel role for ΔNp73 in the DNA damage response pathway. Genes Dev. 2010;24:549–560. doi: 10.1101/gad.1873910. PubMed DOI PMC
Casciano I., Banelli B., Croce M., Allemanni G., Ferrini S., Tonini G.P., Ponzoni M., Romani M. Role of methylation in the control of ΔNp73 expression in neuroblastoma. Cell Death Differ. 2002;9:343–345. doi: 10.1038/sj.cdd.4400992. PubMed DOI
Melino G., Gallagher E., Aqeilan R.I., Knight R., Peschiaroli A., Rossi M., Scialpi F., Malatesta M., Zocchi L., Browne G., et al. Itch: A HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 2008;15:1103–1112. doi: 10.1038/cdd.2008.60. PubMed DOI
Bernassola F., Karin M., Ciechanover A., Melino G. The HECT Family of E3 Ubiquitin Ligases: Multiple Players in Cancer Development. Cancer Cell. 2008;14:10–21. doi: 10.1016/j.ccr.2008.06.001. PubMed DOI
Hansen T.M., Rossi M., Roperch J.P., Ansell K., Simpson K., Taylor D., Mathon N., Knight R.A., Melino G. Itch inhibition regulates chemosensitivity in vitro. Biochem. Biophys. Res. Commun. 2007;361:33–36. doi: 10.1016/j.bbrc.2007.06.104. PubMed DOI
Bongiorno-Borbone L., Giacobbe A., Compagnone M., Eramo A., De Maria R., Peschiaroli A., Melino G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget. 2015;6:16926–16938. doi: 10.18632/oncotarget.4700. PubMed DOI PMC
de la Fuente M., Jones M.C., Santander-Ortega M.J., Mirenska A., Marimuthu P., Uchegbu I., Schätzlein A. A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer. Nanomed. Nanotechnol. Biol. Med. 2015;11:369–377. doi: 10.1016/j.nano.2014.09.010. PubMed DOI
Meng J., Tagalakis A.D., Hart S.L. Silencing E3 Ubiqutin ligase ITCH as a potential therapy to enhance chemotherapy efficacy in p53 mutant neuroblastoma cells. Sci. Rep. 2020;10:1046. doi: 10.1038/s41598-020-57854-6. PubMed DOI PMC
Yin Q., Wyatt C.J., Han T., Smalley K.S.M., Wan L. ITCH as a potential therapeutic target in human cancers. Semin. Cancer Biol. 2020;67:117–130. doi: 10.1016/j.semcancer.2020.03.003. PubMed DOI PMC
Chaudhary N., Maddika S. WWP2-WWP1 Ubiquitin Ligase Complex Coordinated by PPM1G Maintains the Balance between Cellular p73 and ΔNp73 Levels. Mol. Cell. Biol. 2014;34:3754–3764. doi: 10.1128/MCB.00101-14. PubMed DOI PMC
Peschiaroli A., Scialpi F., Bernassola F., Pagano M., Melino G. The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene. 2009;28:3157–3166. doi: 10.1038/onc.2009.177. PubMed DOI PMC
Sayan B.S., Yang A.L., Conforti F., Tucci P., Piro M.C., Browne G.J., Agostini M., Bernardini S., Knight R.A., Mak T.W., et al. Differential control of TAp73 and ΔNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proc. Natl. Acad. Sci. USA. 2010;107:12877–12882. doi: 10.1073/pnas.0911828107. PubMed DOI PMC
Rossi M., De Laurenzi V., Munarriz E., Green D.R., Liu Y.C., Vousden K.H., Cesareni G., Melino G. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J. 2005;24:836–848. doi: 10.1038/sj.emboj.7600444. PubMed DOI PMC
Rossi M., Rotblat B., Ansell K., Amelio I., Caraglia M., Misso G., Bernassola F., Cavasotto C.N., Knight R.A., Ciechanover A., et al. High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy. Cell Death Dis. 2014;5:e1203. doi: 10.1038/cddis.2014.113. PubMed DOI PMC
Gillman P.K. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br. J. Pharmacol. 2007;151:737–748. doi: 10.1038/sj.bjp.0707253. PubMed DOI PMC
Mou P.K., Yang E.J., Shi C., Ren G., Tao S., Shim J.S. Aurora kinase A, a synthetic lethal target for precision cancer medicine. Exp. Mol. Med. 2021;53:835–847. doi: 10.1038/s12276-021-00635-6. PubMed DOI PMC
Yang Y., Ding L., Zhou Q., Fen L., Cao Y., Sun J., Zhou X., Liu A. Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. Cancer Cell Int. 2020;20:9. doi: 10.1186/s12935-019-1072-y. PubMed DOI PMC
Goldenson B., Crispino J.D. The aurora kinases in cell cycle and leukemia. Oncogene. 2015;34:537–545. doi: 10.1038/onc.2014.14. PubMed DOI PMC
Nikonova A.S., Astsaturov I., Serebriiskii I.G., Dunbrack R.L., Golemis E.A. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci. 2013;70:661–687. doi: 10.1007/s00018-012-1073-7. PubMed DOI PMC
Sasai K., Treekitkarnmongkol W., Kai K., Katayama H., Sen S. Functional significance of Aurora kinases-p53 protein family interactions in cancer. Front. Oncol. 2016;6:247. doi: 10.3389/fonc.2016.00247. PubMed DOI PMC
Marumoto T., Hirota T., Morisaki T., Kunitoku N., Zhang D., Ichikawa Y., Sasayama T., Kuninaka S., Mimori T., Tamaki N., et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells. 2002;7:1173–1182. doi: 10.1046/j.1365-2443.2002.00592.x. PubMed DOI
Shao S., Wang Y., Jin S., Song Y., Wang X., Fan W., Zhao Z., Fu M., Tong T., Dong L., et al. Gadd45a interacts with aurora-A and inhibits its kinase activity. J. Biol. Chem. 2006;281:28943–28950. doi: 10.1074/jbc.M600235200. PubMed DOI
Mao J.H., Perez-Iosada J., Wu D., DelRosario R., Tsunematsu R., Nakayama K.I., Brown K., Bryson S., Balmain A. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432:775–779. doi: 10.1038/nature03155. PubMed DOI
Wu C.C., Yang T.Y., Yu C.T.R., Phan L., Ivan C., Sood A.K., Hsu S.L., Lee M.H. p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle. 2012;11:3433–3442. doi: 10.4161/cc.21732. PubMed DOI PMC
Teng C.L., Hsieh Y.C., Phan L., Shin J., Gully C., Velazquez-Torres G., Skerl S., Yeung S.C.J., Hsu S.L., Lee M.H. FBXW7 is involved in Aurora B degradation. Cell Cycle. 2012;11:4059–4068. doi: 10.4161/cc.22381. PubMed DOI PMC
Kwon Y.W., Kim I.J., Wu D., Lu J., Stock W.A., Liu Y., Huang Y., Kang H.C., DelRosario R., Jen K.Y., et al. Pten regulates Aurora-A and cooperates with Fbxw7 in modulating radiation-induced tumor development. Mol. Cancer Res. 2012;10:834–844. doi: 10.1158/1541-7786.MCR-12-0025. PubMed DOI PMC
Mao J.H., Wu D., Perez-Losada J., Jiang T., Li Q., Neve R.M., Gray J.W., Cai W.W., Balmain A. Crosstalk between Aurora-A and p53: Frequent Deletion or Downregulation of Aurora-A in Tumors from p53 Null Mice. Cancer Cell. 2007;11:161–173. doi: 10.1016/j.ccr.2006.11.025. PubMed DOI PMC
Otto T., Horn S., Brockmann M., Eilers U., Schüttrumpf L., Popov N., Kenney A.M., Schulte J.H., Beijersbergen R., Christiansen H., et al. Stabilization of N-Myc Is a Critical Function of Aurora A in Human Neuroblastoma. Cancer Cell. 2009;15:67–78. doi: 10.1016/j.ccr.2008.12.005. PubMed DOI
Brockmann M., Poon E., Berry T., Carstensen A., Deubzer H.E., Rycak L., Jamin Y., Thway K., Robinson S.P., Roels F., et al. Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma. Cancer Cell. 2013;24:75–89. doi: 10.1016/j.ccr.2013.05.005. PubMed DOI PMC
Katayama H., Sasai K., Kawai H., Yuan Z.M., Bondaruk J., Suzuki F., Fujii S., Arlinghaus R.B., Czerniak B.A., Sen S. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat. Genet. 2004;36:55–62. doi: 10.1038/ng1279. PubMed DOI
Liu Q., Kaneko S., Yang L., Feldman R.I., Nicosia S.V., Chen J., Cheng J.Q. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem. 2004;279:52175–52182. doi: 10.1074/jbc.M406802200. PubMed DOI
Dar A.A., Belkhiri A., Ecsedy J., Zaika A., El-Rifai W. Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res. 2008;68:8998–9004. doi: 10.1158/0008-5472.CAN-08-2658. PubMed DOI PMC
Katayama H., Wang J., Treekitkarnmongkol W., Kawai H., Sasai K., Zhang H., Wang H., Adams H.P., Jiang S., Chakraborty S.N., et al. Aurora Kinase-A Inactivates DNA Damage-Induced Apoptosis and Spindle Assembly Checkpoint Response Functions of p73. Cancer Cell. 2012;21:196–211. doi: 10.1016/j.ccr.2011.12.025. PubMed DOI PMC
Gao F., Ponte J.F., Levy M., Papageorgis P., Cook N.M., Ozturk S., Lambert A.W., Thiagalingam A., Abdolmaleky H.M., Sullivan B.A., et al. hBub1 negatively regulates p53 mediated early cell death upon mitotic checkpoint activation. Cancer Biol. Ther. 2009;8:636–644. doi: 10.4161/cbt.8.7.7929. PubMed DOI
Fujiwara T., Bandi M., Nitta M., Ivanova E.V., Bronson R.T., Pellman D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature. 2005;437:1043–1047. doi: 10.1038/nature04217. PubMed DOI
Margolis R.L., Lohez O.D., Andreassen P.R. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J. Cell. Biochem. 2003;88:673–683. doi: 10.1002/jcb.10411. PubMed DOI
Andreassen P.R., Lohez O.D., Lacroix F.B., Margolis R.L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell. 2001;12:1315–1328. doi: 10.1091/mbc.12.5.1315. PubMed DOI PMC
Tomasini R., Tsuchihara K., Tsuda C., Lau S.K., Wilhelm M., Ruffini A., Tsao M.S., Iovanna J.L., Jurisicova A., Melino G., et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc. Natl. Acad. Sci. USA. 2009;106:797–802. doi: 10.1073/pnas.0812096106. PubMed DOI PMC
Vernole P., Neale M.H., Barcaroli D., Munarriz E., Knight R.A., Tomasini R., Mak T.W., Melino G., De Laurenzi V. TAp73α binds the kinetochore proteins Bub1 and Bub3 resulting in polyploidy. Cell Cycle. 2009;8:421–429. doi: 10.4161/cc.8.3.7623. PubMed DOI
Marrazzo E., Marchini S., Tavecchio M., Alberio T., Previdi S., Erba E., Rotter V., Broggini M. The expression of the ΔNp73β isoform of p73 leads to tetraploidy. Eur. J. Cancer. 2009;45:443–453. doi: 10.1016/j.ejca.2008.09.024. PubMed DOI
Yi J.S., Sias-Garcia O., Nasholm N., Hu X., Iniguez A.B., Hall M.D., Davis M., Guha R., Moreno-Smith M., Barbieri E., et al. The synergy of BET inhibitors with aurora A kinase inhibitors in MYCN-amplified neuroblastoma is heightened with functional TP53. Neoplasia. 2021;23:624–633. doi: 10.1016/j.neo.2021.05.003. PubMed DOI PMC
Nguyen R., Wang H., Sun M., Lee D.G., Peng J., Thiele C.J. Combining selinexor with alisertib to target the p53 pathway in neuroblastoma. Neoplasia. 2022;26:100776. doi: 10.1016/j.neo.2022.100776. PubMed DOI PMC
Schwab M., Ellison J., Busch M. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc. Natl. Acad. Sci. USA. 1984;81:4940–4944. doi: 10.1073/pnas.81.15.4940. PubMed DOI PMC
Kohl N.E., Kanda N., Schreck R.R., Bruns G., Latt S.A., Gilbert F., Alt F.W. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35:359–367. doi: 10.1016/0092-8674(83)90169-1. PubMed DOI
Higashi M., Sakai K., Fumino S., Aoi S., Furukawa T., Tajiri T. The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development. Surg. Today. 2019;49:721–727. doi: 10.1007/s00595-019-01790-0. PubMed DOI
Wakamatsu Y., Watanabe Y., Nakamura H., Kondoh H. Regulation of the neural crest cell fate by N-myc: Promotion of ventral migration and neuronal differentiation. Development. 1997;124:1953–1962. doi: 10.1242/dev.124.10.1953. PubMed DOI
Dominguez-Sola D., Ying C.Y., Grandori C., Ruggiero L., Chen B., Li M., Galloway D.A., Gu W., Gautier J., Dalla-Favera R. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448:445–451. doi: 10.1038/nature05953. PubMed DOI
Shachaf C.M., Kopelman A.M., Arvanitis C., Karlsson Å., Beer S., Mandl S., Bachmann M.H., Borowsky A.D., Ruebner B., Cardiff R.D., et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431:1112–1117. doi: 10.1038/nature03043. PubMed DOI
Jain M., Arvanitis C., Chu K., Dewey W., Leonhardt E., Trinh M., Sundberg C.D., Bishop J.M., Felsher D.W. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297:102–104. doi: 10.1126/science.1071489. PubMed DOI
Kubota Y., Kim S.H., Iguchi-Ariga S.M.M., Ariga H. Transrepression of the N-MYC expression by C-MYC protein. Biochem. Biophys. Res. Commun. 1989;162:991–997. doi: 10.1016/0006-291X(89)90771-7. PubMed DOI
Levy N., Yonish-Rouach E., Oren M., Kimchi A. Complementation by wild-type p53 of interleukin-6 effects on M1 cells: Induction of cell cycle exit and cooperativity with c-myc suppression. Mol. Cell. Biol. 1993;13:7942–7952. doi: 10.1128/mcb.13.12.7942-7952.1993. PubMed DOI PMC
Ho J.S.L., Ma W., Mao D.Y.L., Benchimol S. p53-Dependent Transcriptional Repression of c-myc Is Required for G1 Cell Cycle Arrest. Mol. Cell. Biol. 2005;25:7423–7431. doi: 10.1128/MCB.25.17.7423-7431.2005. PubMed DOI PMC
Feng Y.C., Liu X.Y., Teng L., Ji Q., Wu Y., Li J.M., Gao W., Zhang Y.Y., La T., Tabatabaee H., et al. c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat. Commun. 2020;11:4980. doi: 10.1038/s41467-020-18735-8. PubMed DOI PMC
Watanabe K.I., Ozaki T., Nakagawa T., Miyazaki K., Takahashi M., Hosoda M., Hayashi S., Todo S., Nakagawara A. Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. J. Biol. Chem. 2002;277:15113–15123. doi: 10.1074/jbc.M111281200. PubMed DOI
Chen L., Tweddle D.A. p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance. Front. Oncol. 2012;2:173. doi: 10.3389/fonc.2012.00173. PubMed DOI PMC
Zindy F., Eischen C.M., Randle D.H., Kamijo T., Cleveland J.L., Sherr C.J., Roussel M.F. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 1998;12:2424–2433. doi: 10.1101/gad.12.15.2424. PubMed DOI PMC
Otte J., Dyberg C., Pepich A., Johnsen J.I. MYCN Function in Neuroblastoma Development. Front. Oncol. 2021;10:624079. doi: 10.3389/fonc.2020.624079. PubMed DOI PMC
Chen J., Guan Z. Function of Oncogene Mycn in Adult Neurogenesis and Oligodendrogenesis. Mol. Neurobiol. 2022;59:77–92. doi: 10.1007/s12035-021-02584-7. PubMed DOI PMC
Knoepfler P.S., Cheng P.F., Eisenman R.N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16:2699–2712. doi: 10.1101/gad.1021202. PubMed DOI PMC
Alam G., Cui H., Shi H., Yang L., Ding J., Mao L., Maltese W.A., Ding H.F. MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am. J. Pathol. 2009;175:856–866. doi: 10.2353/ajpath.2009.090019. PubMed DOI PMC
Kapeli K., Hurlin P.J. Differential Regulation of N-Myc and c-Myc Synthesis, Degradation, and Transcriptional Activity by the Ras/Mitogen-activated Protein Kinase Pathway. J. Biol. Chem. 2011;286:38498–38508. doi: 10.1074/jbc.M111.276675. PubMed DOI PMC
Maris J.M. Recent Advances in Neuroblastoma. N. Engl. J. Med. 2010;362:2202–2211. doi: 10.1056/NEJMra0804577. PubMed DOI PMC
Huang M., Weiss W.A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 2013;3:a014415. doi: 10.1101/cshperspect.a014415. PubMed DOI PMC
Schwab M., Alitalo K., Klempnauer K.H., Varmus H.E., Bishop J.M., Gilbert F., Brodeur G., Goldstein M., Trent J. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature. 1983;305:245–248. doi: 10.1038/305245a0. PubMed DOI
Seeger R.C., Brodeur G.M., Sather H., Dalton A., Siegel S.E., Wong K.Y., Hammond D. Association of multiple copies of the N-MYC oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 1985;313:1111–1116. doi: 10.1056/NEJM198510313131802. PubMed DOI
Brodeur G., Seeger R., Schwab M., Varmus H., Bishop J. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–1124. doi: 10.1126/science.6719137. PubMed DOI
Weiss W.A., Aldape K., Mohapatra G., Feuerstein B.G., Bishop J.M., Hooper G.W. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–2995. doi: 10.1093/emboj/16.11.2985. PubMed DOI PMC
Althoff K., Beckers A., Bell E., Nortmeyer M., Thor T., Sprüssel A., Lindner S., De Preter K., Florin A., Heukamp L.C. A Cre-conditional MYCN -driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene. 2015;34:3357–3368. doi: 10.1038/onc.2014.269. PubMed DOI PMC
Olsen R.R., Otero J.H., Wallace K., Finkelstein D., Rehg J.E., Yin Z., Wang Y., Freeman K.W. MYCN induces neuroblastoma in primary neural crest cells. Oncogene. 2017;36:5075–5082. doi: 10.1038/onc.2017.128. PubMed DOI PMC
Zhu S., Lee J., Guo F., Shin J., Perez-atayde A.R., Kutok J.L., Rodig S.J., Neuberg D.S., Helman D., Feng H., et al. Article Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell. 2012;21:362–373. doi: 10.1016/j.ccr.2012.02.010. PubMed DOI PMC
Powers J.T., Tsanov K.M., Pearson D.S., Roels F., Spina C.S., Ebright R., Seligson M., De Soysa Y., Cahan P., Theißen J., et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 2016;535:246–251. doi: 10.1038/nature18632. PubMed DOI PMC
Viswanathan S.R., Daley G.Q., Gregory R.I. Selective Blockade of MicroRNA Processing by Lin28. Science. 2008;320:97–100. doi: 10.1126/science.1154040. PubMed DOI PMC
Rickman D.S., Schulte J.H., Eilers M. The Expanding World of N-MYC–Driven Tumors. Cancer Discov. 2018;8:150–163. doi: 10.1158/2159-8290.CD-17-0273. PubMed DOI
Stanke M., Duong C.V., Pape M., Geissen M., Burbach G., Deller T., Parlato R., Schütz G., Development H.R., Duong C.V., et al. Target-dependent specification of the neurotransmitter phenotype: Cholinergic differentiation of sympathetic neurons is mediated in vivo by gp130 signaling. Development. 2006;133:141–150. doi: 10.1242/dev.02189. PubMed DOI
Molenaar J.J., Domingo-Fernández R., Ebus M.E., Lindner S., Koster J., Drabek K., Mestdagh P., Van Sluis P., Valentijn L.J., Van Nes J., et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat. Genet. 2012;44:1199–1208. doi: 10.1038/ng.2436. PubMed DOI
Nguyen L.H., Robinton D.A., Seligson M.T., Wu L., Li L., Rakheja D., Comerford S.A., Ramezani S., Sun X., Parikh M.S., et al. Article Lin28b Is Sufficient to Drive Liver Cancer and Necessary for Its Maintenance in Murine Models. Cancer Cell. 2014;26:248–261. doi: 10.1016/j.ccr.2014.06.018. PubMed DOI PMC
Urbach A., Yermalovich A., Zhang J., Spina C.S., Zhu H., Perez-atayde A.R., Shukrun R., Charlton J., Sebire N., Mifsud W., et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 2014;28:971–982. doi: 10.1101/gad.237149.113. PubMed DOI PMC
Gu L., Zhang H., He J., Li J., Huang M., Zhou M. MDM2 regulates MYCN mRNA stabilization and translation in human neuroblastoma cells. Oncogene. 2012;31:1342–1353. doi: 10.1038/onc.2011.343. PubMed DOI PMC
He J., Gu L., Zhang H., Zhou M. Crosstalk between MYCN and MDM2-p53 signal pathways regulates tumor cell growth and apoptosis in neuroblastoma. Cell Cycle. 2011;10:2994–3002. doi: 10.4161/cc.10.17.17118. PubMed DOI PMC
Slack A., Chen Z., Tonelli R., Pule M., Hunt L., Pession A., Shohet J.M. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc. Natl. Acad. Sci. USA. 2005;102:731–736. doi: 10.1073/pnas.0405495102. PubMed DOI PMC
Agarwal S., Milazzo G., Rajapakshe K., Bernardi R., Chen Z., Barberi E., Koster J., Perini G., Coarfa C., Shohet J.M. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget. 2018;9:20323–20338. doi: 10.18632/oncotarget.24859. PubMed DOI PMC
Horvilleur E., Bauer M., Goldschneider D., Mergui X., De la motte A., Bénard J., Douc-rasy S., Cappellen D. p73α isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Res. 2008;36:4222–4232. doi: 10.1093/nar/gkn394. PubMed DOI PMC
Liu Z., Chen S.S., Clarke S., Veschi V., Thiele C.J. Targeting MYCN in Pediatric and Adult Cancers. Front. Oncol. 2021;10:623679. doi: 10.3389/fonc.2020.623679. PubMed DOI PMC
Clausen D.M., Guo J., Parise R.A., Beumer J.H., Egorin M.J., Lazo J.S., Prochownik E.V., Eiseman J.L. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization. J. Pharmacol. Exp. Ther. 2010;335:715–727. doi: 10.1124/jpet.110.170555. PubMed DOI PMC
Johnsen J.I., Dyberg C., Fransson S., Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol. Res. 2018;131:164–176. doi: 10.1016/j.phrs.2018.02.023. PubMed DOI
DuBois S.G., Marachelian A., Fox E., Kudgus R.A., Reid J.M., Groshen S., Malvar J., Bagatell R., Wagner L., Maris J.M., et al. Phase I study of the Aurora A kinase inhibitor Alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: A NANT (new approaches to neuroblastoma therapy) trial. J. Clin. Oncol. 2016;34:1368–1375. doi: 10.1200/JCO.2015.65.4889. PubMed DOI PMC
Zafar A., Wang W., Liu G., Wang X., Xian W., McKeon F., Foster J., Zhou J., Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med. Res. Rev. 2021;41:961–1021. doi: 10.1002/med.21750. PubMed DOI PMC
Smith J.R., Moreno L., Heaton S.P., Chesler L., Pearson A.D.J., Garrett M.D. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol. Oncol. 2016;10:538–552. doi: 10.1016/j.molonc.2015.11.005. PubMed DOI PMC
Hassan B., Akcakanat A., Holder A.M., Meric-Bernstam F. Targeting the PI3-kinase/Akt/mTOR Signaling Pathway. Surg. Oncol. Clin. N. Am. 2013;22:641–664. doi: 10.1016/j.soc.2013.06.008. PubMed DOI PMC
Saliminejad K., Khorram Khorshid H.R., Soleymani Fard S., Ghaffari S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019;234:5451–5465. doi: 10.1002/jcp.27486. PubMed DOI
Ambros V., Bartel B., Bartel D.P., Burge C.B., Carrington J.C., Chen X., Dreyfuss G., Eddy S.R., Griffiths-jones S.M., Marshall M., et al. A uniform system for microRNA annotation. RNA. 2003;9:277–279. doi: 10.1261/rna.2183803. PubMed DOI PMC
Li M., Li J., Ding X., He M., Cheng S.Y. MicroRNA and cancer. AAPS J. 2010;12:309–317. doi: 10.1208/s12248-010-9194-0. PubMed DOI PMC
Bhaskaran M., Mohan M. MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Vet. Pathol. 2014;51:759–774. doi: 10.1177/0300985813502820. PubMed DOI PMC
Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:140–144. doi: 10.1093/nar/gkj112. PubMed DOI PMC
Griffiths-Jones S., Saini H.K., Van Dongen S., Enright A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008;36:154–158. doi: 10.1093/nar/gkm952. PubMed DOI PMC
Syeda Z.A., Langden S.S.S., Munkhzul C., Lee M., Song S.J. Regulatory mechanism of microrna expression in cancer. Int. J. Mol. Sci. 2020;21:1723. doi: 10.3390/ijms21051723. PubMed DOI PMC
Pajares M.J., Alemany-cosme E., Goñi S., Bandres E., Palanca-Ballester C., Sandoval J. Epigenetic regulation of microRNAs in cancer: Shortening the distance from bench to bedside. Int. J. Mol. Sci. 2021;22:7350. doi: 10.3390/ijms22147350. PubMed DOI PMC
Logotheti S., Marquardt S., Putzer B.M. p73-Governed miRNA Networks: Translating Bioinformatics Approaches to Therapeutic Solutions for Cancer Metastasis. In: Lai X., Gupta S.K., Vera J., editors. Computational Biology of Non-Coding RNA: Methods and Protocols. Volume 1912. Humana Press; New York, NY, USA: 2019. pp. 33–52. PubMed
Liu J., Zhang C., Zhao Y., Feng Z. MicroRNA Control of p53. J. Cell. Biochem. 2017;118:7–14. doi: 10.1002/jcb.25609. PubMed DOI
Veeraraghavan V.P., Jayaraman S., Rengasamy G., Mony U., Ganapathy D.M., Geetha R.V., Sekar D. Deciphering the role of micrornas in neuroblastoma. Molecules. 2022;27:99. doi: 10.3390/molecules27010099. PubMed DOI PMC
Galardi A., Colletti M., Businaro P., Quintarelli C., Locatelli F., Di Giannatale A. MicroRNAs in Neuroblastoma: Biomarkers with Therapeutic Potential. Curr. Med. Chem. 2017;25:584–600. doi: 10.2174/0929867324666171003120335. PubMed DOI
Tivnan A., Orr W.S., Gubala V., Nooney R., Williams D.E., McDonagh C., Prenter S., Harvey H., Domingo-Fernández R., Bray I.M., et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS ONE. 2012;7:e38129. doi: 10.1371/journal.pone.0038129. PubMed DOI PMC
Boominathan L. The Tumor Suppressors p53, p63, and p73 Are Regulators of MicroRNA Processing Complex. PLoS ONE. 2010;5:e10615. doi: 10.1371/journal.pone.0010615. PubMed DOI PMC
Boominathan L. Tumor suppressors p53, p63, and p73 inhibit migrating cancer stem cells by increasing the expression of stem cell suppressing miRNAs. Cell. 2010;1:1–20. doi: 10.1038/npre.2010.4385.1. DOI
Madrigal T., Hernández-Monge J., Herrera L.A., González-De la Rosa C.H., Domínguez-Gómez G., Candelaria M., Luna-Maldonado F., Calderón González K.G., Díaz-Chávez J. Regulation of miRNAs Expression by Mutant p53 Gain of Function in Cancer. Front. Cell Dev. Biol. 2021;9:695723. doi: 10.3389/fcell.2021.695723. PubMed DOI PMC
Li X.L., Jones M.F., Subramanian M., Lal A. Mutant p53 exerts oncogenic effects through microRNAs and their target gene networks. FEBS Lett. 2014;588:2610–2615. doi: 10.1016/j.febslet.2014.03.054. PubMed DOI PMC
Chen X., Buhe B., Hongtime L., Chuanmin Y., Xiwei H., Hong Z., Lulu H., Qian D., Renjie W. MicroRNA-15a promotes neuroblastoma migration by targeting reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and regulating matrix metalloproteinase-9 expression. FEBS J. 2013;280:855–866. doi: 10.1111/febs.12074. PubMed DOI
Wang Z., Yao W., Li K., Zheng N., Zheng C., Zhao X., Zheng S. Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via PTEN/PDCD4. Oncol. Lett. 2017;13:4727–4733. doi: 10.3892/ol.2017.6052. PubMed DOI PMC
Cheng L., Yang T., Kuang Y., Kong B., Yu S., Shu H., Zhou H., Gu J. MicroRNA-23a promotes neuroblastoma cell metastasis by targeting CDH1. Oncol. Lett. 2014;7:839–845. doi: 10.3892/ol.2014.1794. PubMed DOI PMC
He X.Y., Tan Z.L., Mou Q., Liu F.J., Liu S., Yu C.W., Zhu J., Lv L.Y., Zhang J., Wang S., et al. microRNA-221 enhances MYCN via targeting nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma. Clin. Cancer Res. 2017;23:2905–2918. doi: 10.1158/1078-0432.CCR-16-1591. PubMed DOI
Swarbrick A., Woods S.L., Shaw A., Phua Y., Nguyen A., Chanthery Y., Lim L., Lesley J., Judson R.L., Huskey N., et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN amplified neuroblastoma. Nat. Med. 2011;16:1134–1140. doi: 10.1038/nm.2227. PubMed DOI PMC
Qu H., Zheng L., Pu J., Mei H., Xiang X., Zhao X., Li D., Li S., Mao L., Huang K., et al. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum. Mol. Genet. 2015;24:2539–2551. doi: 10.1093/hmg/ddv018. PubMed DOI
Li Z., Xu Z., Xie Q., Gao W., Xie J., Zhou L. miR-1303 promotes the proliferation of neuroblastoma cell SH-SY5Y by targeting GSK3β and SFRP1. Biomed. Pharmacother. 2016;83:508–513. doi: 10.1016/j.biopha.2016.07.010. PubMed DOI
Ye W., Liang F., Ying C., Zhang M., Feng D., Jiang X. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp. Ther. Med. 2019;18:3729–3736. doi: 10.3892/etm.2019.8007. PubMed DOI PMC
Zhang H., Qi M., Li S., Qi T., Mei H., Huang K., Zheng L., Tong Q. MicroRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol. Cancer Ther. 2012;11:1454–1466. doi: 10.1158/1535-7163.MCT-12-0001. PubMed DOI
Chava S., Reynolds C.P., Pathania A.S., Gorantla S., Poluektova L.Y., Couldter D.W., Gupta S.C., Pandey M.K., Challagundia K.B. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol. Oncol. 2019;14:180–196. doi: 10.1002/1878-0261.12588. PubMed DOI PMC
De Antonellis P., Carotenuto M., Vandenbussche J., De Vita G., Ferrucci V., Medaglia C., Boffa I., Galiero A., Di Somma S., Magliulo D., et al. Early targets of miR-34a in neuroblastoma. Mol. Cell. Proteom. 2014;13:2114–2131. doi: 10.1074/mcp.M113.035808. PubMed DOI PMC
Agostini M., Tucci P., Killick R., Candi E., Sayan B.S., Di Val Cervo P.R., Nicoterad P., McKeon F., Knight R.A., Mak T.W., et al. Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc. Natl. Acad. Sci. USA. 2011;108:21093–21098. doi: 10.1073/pnas.1112061109. PubMed DOI PMC
Feinberg-Gorenshtein G., Guedj A., Shichrur K., Jeison M., Luria D., Kodman Y., Ash S., Feinmesser M., Edry L., Shomron N., et al. miR-192 directly binds and regulates Dicer1 expression in neuroblastoma. PLoS ONE. 2013;8:e78713. doi: 10.1371/journal.pone.0078713. PubMed DOI PMC
Zhao D., Tian Y., Li P., Wang L., Xiao A., Zhang M., Shi T. MicroRNA-203 inhibits the malignant progression of neuroblastoma by targeting Sam68. Mol. Med. Rep. 2015;12:5554–5560. doi: 10.3892/mmr.2015.4013. PubMed DOI
Chen X., Pan M., Han L., Lu H., Hao X., Dong Q. miR-338-3p suppresses neuroblastoma proliferation invasion and migration through targeting PREX2a. FEBS Lett. 2013;587:3729–3737. doi: 10.1016/j.febslet.2013.09.044. PubMed DOI
Wu T., Lin Y., Xie Z. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biol. Res. 2018;51:13. doi: 10.1186/s40659-018-0162-y. PubMed DOI PMC
Afanasyeva E.A., Mestdagh P., Kumps C., Vandesompele J., Ehemann V., Theissen J., Fischer M., Zapatka M., Brors B., Savelyeva L., et al. MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ. 2011;18:974–984. doi: 10.1038/cdd.2010.164. PubMed DOI PMC
Guglielmi L., Cinnella C., Nardella M., Maresca G., Valentini A., Mercanti D., Felsani A., D’Agnano I. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death Dis. 2014;5:e1081. doi: 10.1038/cddis.2014.42. PubMed DOI PMC
Slabáková E., Culig Z., Remšík J., Souček K. Alternative mechanisms of MIR-34a regulation in cancer. Cell Death Dis. 2017;8:e3100. doi: 10.1038/cddis.2017.495. PubMed DOI PMC
Rihani A., Van Goethem A., Ongenaert M., De Brouwer S., Volders P.J., Agarwal S., De Preter K., Mestdagh P., Shohet J., Speleman F., et al. Genome wide expression profiling of p53 regulated miRNAs in neuroblastoma. Sci. Rep. 2015;5:9027. doi: 10.1038/srep09027. PubMed DOI PMC
Le M.T.N., Teh C., Shyh-Chang N., Xie H., Zhou B., Korzh V., Lodish H.F., Lim B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23:862–876. doi: 10.1101/gad.1767609. PubMed DOI PMC
Cai Q., Zeng S., Dai X., Wu J., Ma W. MiR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1. Oncol. Rep. 2017;38:2993–3000. doi: 10.3892/or.2017.5983. PubMed DOI
Irwin M.S., Naranjo A., Zhang F.F., Cohn S.L., London W.B., Gastier-Foster J.M., Ramirez N.C., Pfau R., Reshmi S., Wagner E., et al. Revised Neuroblastoma Risk Classification System: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2021;39:3229–3241. doi: 10.1200/JCO.21.00278. PubMed DOI PMC