Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
95505174
UKRI | Medical Research Council (MRC)
PubMed
38985935
PubMed Central
PMC11427053
DOI
10.1152/jn.00422.2023
Knihovny.cz E-zdroje
- Klíčová slova
- exercise, inhibitory molecules, intermittent hypoxia, neuroplasticity, treadmill training,
- MeSH
- hipokampus * metabolismus MeSH
- hypoxie metabolismus patofyziologie MeSH
- kinázy asociované s Rho * metabolismus genetika MeSH
- krysa rodu Rattus MeSH
- mícha metabolismus fyziologie MeSH
- mozková kůra metabolismus fyziologie MeSH
- neuroplasticita fyziologie MeSH
- potkani Wistar * MeSH
- Rho proteiny vázající GTP MeSH
- rhoA protein vázající GTP metabolismus MeSH
- signální transdukce * fyziologie MeSH
- vysoce intenzivní intervalový trénink * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kinázy asociované s Rho * MeSH
- Rho proteiny vázající GTP MeSH
- rhoA protein vázající GTP MeSH
- RhoA protein, rat MeSH Prohlížeč
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Department of Cell and Molecular Biology Karolinska Institute Stockholm Sweden
Institute of Experimental Medicine The Czech Academy of Sciences Prague 4 Czech Republic
School of Biomedical Sciences University of Leeds Leeds United Kingdom
School of Psychology and Neuroscience University of St Andrews St Andrews United Kingdom
School of Sport Exercise and Health Sciences Loughborough University Loughborough United Kingdom
Zobrazit více v PubMed
Cooke P, Janowitz H, Dougherty SE. Neuronal redevelopment and the regeneration of neuromodulatory axons in the adult mammalian central nervous system. Front Cell Neurosci 16: 872501, 2022. doi:10.3389/FNCEL.2022.872501. PubMed DOI PMC
Guo H, Ali T, Que J, Zhou Y, Bai Y. Dendritic spine dynamics in associative memory: a comprehensive review. FASEB J 37: e22896, 2023. doi:10.1096/FJ.202202166R. PubMed DOI
Zhang K, Zhao T, Huang X, Wu LY, Wu K, Zhu LL, Fan M. Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia. Neurobiol Dis 64: 66–78, 2014. doi:10.1016/J.NBD.2013.12.010. PubMed DOI
Zhu LL, Zhao T, Li HS, Zhao H, Wu LY, Ding AS, Fan WH, Fan M. Neurogenesis in the adult rat brain after intermittent hypoxia. Brain Res 1055: 1–6, 2005. doi:10.1016/J.BRAINRES.2005.04.075. PubMed DOI
Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X, Bean JC, Chen LH, Qin XH, Liu JH, Bai XC, Mei L, Gao TM. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30: 12653–12663, 2010. doi:10.1523/JNEUROSCI.6414-09.2010. PubMed DOI PMC
Meng SX, Wang B, Li WT. Intermittent hypoxia improves cognition and reduces anxiety-related behavior in APP/PS1 mice. Brain Behav 10: e01513, 2020. doi:10.1002/BRB3.1513. PubMed DOI PMC
Tsai YW, Yang YR, Sun SH, Liang KC, Wang RY. Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J Cereb Blood Flow Metab 33: 764–773, 2013. doi:10.1038/JCBFM.2013.15. PubMed DOI PMC
Tsai YW, Yang YR, Wang PS, Wang RY. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One 6: e24001, 2011. doi:10.1371/JOURNAL.PONE.0024001. PubMed DOI PMC
Yue X, Zhou Y, Qiao M, Zhao X, Huang X, Zhao T, Cheng X, Fan M, Zhao Y, Chen R, Zhu L. Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain. Alzheimers Res Ther 13–: 194, 2021. doi:10.1186/S13195-021-00935-Z. PubMed DOI PMC
Okamoto M, Mizuuchi D, Omura K, Lee M, Oharazawa A, Yook JS, Inoue K, Soya H. High-intensity intermittent training enhances spatial memory and hippocampal neurogenesis associated with BDNF signaling in rats. Cereb Cortex 31: 4386–4397, 2021. doi:10.1093/CERCOR/BHAB093. PubMed DOI
Rocha-Gomes A, Alvarenga E Castro TP, Almeida PR, Balsamão Paes Leme PS, da Silva AA, Riul TR, Bastos CP, Leite HR. High-intensity interval training improves long-term memory and increases hippocampal antioxidant activity and BDNF levels in ovariectomized Wistar rats. Behav Brain Res 453: 114605, 2023. doi:10.1016/J.BBR.2023.114605. PubMed DOI
Afzalpour ME, Chadorneshin HT, Foadoddini M, Eivari HA. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol Behav 147: 78–83, 2015. doi:10.1016/j.physbeh.2015.04.012. PubMed DOI
Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, Mendonça VA, Lacerda AC, Massensini AR, Poortamns JR, Meeusen R, Leite HR. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol Behav 184: 6–11, 2018. doi:10.1016/j.physbeh.2017.10.027. PubMed DOI
Naghibzadeh M, Ranjbar R, Tabandeh M, Habibi A. Comparing the effect of high intensity interval training and continuous training on BDNF, GDNF and NGF in hippocampus of C57BL/6 male mice. J Shahid Sadoughi Univ Med Sci 26: 2019. doi:10.18502/ssu.v26i12.664. DOI
Constans A, Pin-Barre C, Molinari F, Temprado JJ, Brioche T, Pellegrino C, Laurin J. High-intensity interval training is superior to moderate intensity training on aerobic capacity in rats: Impact on hippocampal plasticity markers. Behav Brain Res 398: 112977, 2021. doi:10.1016/J.BBR.2020.112977. PubMed DOI
Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24: 1850–1856, 2006. doi:10.1111/J.1460-9568.2006.05059.X. PubMed DOI
Kellner Y, Gödecke N, Dierkes T, Thieme N, Zagrebelsky M, Korte M. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Front Synaptic Neurosci 6: 5, 2014. doi:10.3389/FNSYN.2014.00005. PubMed DOI PMC
Iwasaki K, Isaacs KR, Jacobowitz DM. Brain-derived neurotrophic factor stimulates neurite outgrowth in a calretinin-enriched neuronal culture system. Int J Dev Neurosci 16: 135–145, 1998. doi:10.1016/S0736-5748(98)00011-2. PubMed DOI
Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 12: 52, 2018. doi:10.3389/fnins.2018.00052. PubMed DOI PMC
Baldwin KT, Giger RJ. Insights into the physiological role of CNS regeneration inhibitors. Front Mol Neurosci 8: 23, 2015. doi:10.3389/fnmol.2015.00023. PubMed DOI PMC
Boghdadi AG, Teo L, Bourne JA. The involvement of the myelin-associated inhibitors and their receptors in CNS plasticity and injury. Mol Neurobiol 55: 1831–1846, 2018. doi:10.1007/s12035-017-0433-6. PubMed DOI
Lai KO, Ip NY. Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. Biochim Biophys Acta Mol Basis Dis 1832: 2257–2263, 2013. doi:10.1016/j.bbadis.2013.08.012. PubMed DOI
Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JCF, Miquel M. Casting a wide net: role of perineuronal nets in neural plasticity. J Neurosci 36: 11459–11468, 2016. doi:10.1523/JNEUROSCI.2351-16.2016. PubMed DOI PMC
Akbik F, Cafferty WBJ, Strittmatter SM. Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol 235: 43–52, 2012. doi:10.1016/j.expneurol.2011.06.006. PubMed DOI PMC
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298: 1248–1251, 2002. doi:10.1126/science.1072699. PubMed DOI
Nowicka D, Soulsby S, Skangiel-Kramska J, Glazewski S. Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex. Eur J Neurosci 30: 2053–2063, 2009. doi:10.1111/J.1460-9568.2009.06996.X. PubMed DOI
Mirzadeh Z, Alonge KM, Cabrales E, Herranz-Pérez V, Scarlett JM, Brown JM, Hassouna R, Matsen ME, Nguyen HT, Garcia-Verdugo JM, Zeltser LM, Schwartz MW. Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nat Metab 1: 212–221, 2019. doi:10.1038/S42255-018-0029-0. PubMed DOI PMC
Giger RJ, Hollis ER, Tuszynski MH. Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2: a001867, 2010. doi:10.1101/cshperspect.a001867. PubMed DOI PMC
Fujita Y, Yamashita T. Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 8: 338, 2014. doi:10.3389/fnins.2014.00338. PubMed DOI PMC
Benson MD, Romero MI, Lush ME, Lu RQ, Henkemeyer M, Parada LF. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA 102: 10694–10699, 2005. doi:10.1073/PNAS.0504021102. PubMed DOI PMC
Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M. Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep 7: 704–709, 2006. doi:10.1038/SJ.EMBOR.7400737. PubMed DOI PMC
Spence EF, Soderling SH. Actin out: regulation of the synaptic cytoskeleton published. J Biol Chem 290: 28613–28622, 2015. doi:10.1074/jbc.R115.655118. PubMed DOI PMC
Kullander K, Croll SD, Zimmer M, Pan L, McClain J, Hughes V, Zabski S, DeChiara TM, Klein R, Yancopoulos GD, Gale NW. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 15: 877–888, 2001. doi:10.1101/GAD.868901. PubMed DOI PMC
Bashaw GJ, Klein R. Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2: a001941, 2010. PubMed PMC
Liu J, Gao H, Wang X. The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system. Neural Regen Res 10: 1892–1896, 2015. doi:10.4103/1673-5374.170325. PubMed DOI PMC
Sami A, Selzer ME, Li S. Advances in the signaling pathways downstream of glial-scar axon growth inhibitors. Front Cell Neurosci, 14: 174, 2020. doi:10.3389/fncel.2020.00174. PubMed DOI PMC
Kempf A, Tews B, Arzt ME, Weinmann O, Obermair FJ, Pernet V, Zagrebelsky M, Delekate A, Iobbi C, Zemmar A, Ristic Z, Gullo M, Spies P, Dodd D, Gygax D, Korte M, Schwab ME. The sphingolipid receptor S1PR2 is a receptor for Nogo—a repressing synaptic plasticity. PLoS Biol 12: e1001763, 2014. [Erratum in PLoS Biol 12: e1001818, 2014]. doi:10.1371/JOURNAL.PBIO.1001763. PubMed DOI PMC
Swiercz JM, Kuner R, Behrens J, Offermanns S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35: 51–63, 2002. doi:10.1016/S0896-6273(02)00750-X. PubMed DOI
Koch JC, Tatenhorst L, Roser AE, Saal KA, Tönges L, Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 189: 1–21, 2018. Elsevier Inc. doi:10.1016/j.pharmthera.2018.03.008. PubMed DOI
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67: 545–554, 2010. doi:10.1002/cm.20472. PubMed DOI PMC
Woolfrey KM, Srivastava DP. Control of dendritic spine morphological and functional plasticity by small GTPases. Neural Plast 2016: 3025948, 2016. doi:10.1155/2016/3025948. PubMed DOI PMC
Chytrova G, Ying Z, Gomez-Pinilla F. Exercise normalizes levels of MAG and Nogo—a growth inhibitors after brain trauma. Eur J Neurosci 27: 1–11, 2008. doi:10.1111/j.1460-9568.2007.05982.x. PubMed DOI
Stehle JH, Sheng Z, Hausmann L, Bechstein P, Weinmann O, Hernesniemi J, Neimat JS, Schwab ME, Zemmar A. Exercise-induced Nogo—a influences rodent motor learning in a time-dependent manner. PLoS One 16: e0250743, 2021. doi:10.1371/JOURNAL.PONE.0250743. PubMed DOI PMC
Ghiani CA, Ying Z, De Vellis J, Gomez-Pinilla F. Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth. Glia 55: 966–975, 2007. doi:10.1002/glia.20521. PubMed DOI PMC
Smith CC, Mauricio R, Nobre L, Marsh B, Wüst RCI, Rossiter HB, Ichiyama RM. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res Bull 111: 20–26, 2015. doi:10.1016/j.brainresbull.2014.12.005. PubMed DOI
Gonzalez-Rothi EJ, Tadjalli A, Allen LL, Ciesla MC, Chami ME, Mitchell GS. Protocol-specific effects of intermittent hypoxia pre-conditioning on phrenic motor plasticity in rats with chronic cervical spinal cord injury. J Neurotrauma 38: 1292–1305, 2021. doi:10.1089/NEU.2020.7324. PubMed DOI PMC
Dougherty BJ, Terada J, Springborn SR, Vinit S, MacFarlane PM, Mitchell GS. Daily acute intermittent hypoxia improves breathing function with acute and chronic spinal injury via distinct mechanisms. Respir Physiol Neurobiol 256: 50–57, 2018. doi:10.1016/J.RESP.2017.05.004. PubMed DOI PMC
Arnold BM, Toosi BM, Caine S, Mitchell GS, Muir GD. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury. Exp Neurol 340: 113672, 2021. doi:10.1016/J.EXPNEUROL.2021.113672. PubMed DOI
Qin F, Dong Y, Wang S, Xu M, Wang Z, Qu C, Yang Y, Zhao J. Maximum oxygen consumption and quantification of exercise intensity in untrained male Wistar rats. Sci Rep 10: 11520, 2020. doi:10.1038/s41598-020-68455-8. PubMed DOI PMC
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611–622, 2009. doi:10.1373/clinchem.2008.112797. PubMed DOI
Hori M, Nakamachi T, Shibato J, Rakwal R, Shioda S, Numazawa S. Unraveling the specific ischemic core and penumbra transcriptome in the permanent middle cerebral artery occlusion mouse model brain treated with the neuropeptide PACAP38. Microarrays (Basel) 4: 2–24, 2015. doi:10.3390/microarrays4010002. PubMed DOI PMC
Kubo H, Shibato J, Saito T, Ogawa T, Rakwal R, Shioda S. Unraveling the rat intestine, spleen and liver genome-wide transcriptome after the oral administration of lavender oil by a two-color dye-swap DNA Microarray Approach. PLoS One 10: e0129951, 2015. doi:10.1371/journal.pone.0129951. PubMed DOI PMC
Schmidt B, Roessler C, Schumann J. Septic-induced microRNA expression modulations are linked to angiogenesis, vasomotion, and hypoxia-induced processes. Adv Exp Med Biol 1072: 227–231, 2018. doi:10.1007/978-3-319-91287-5_36. PubMed DOI
Yook JS, Shibato J, Rakwal R, Soya H. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse. Genom Data 7: 32–37, 2016. doi:10.1016/j.gdata.2015.11.001. PubMed DOI PMC
Heberle H, Meirelles VG, da Silva FR, Telles GP, Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16: 169, 2015. doi:10.1186/s12859-015-0611-3. PubMed DOI PMC
Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y, Benowitz LI, Geller HM, Giger RJ. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15: 703–712, 2012. doi:10.1038/nn.3070. PubMed DOI PMC
Kranenburg O, Poland M, Van Horck FPG, Drechsel D, Hall A, Moolenaar WH. Activation of RhoA by lysophosphatidic acid and Gα12/13 subunits in neuronal cells: Induction of neurite retraction. Mol Biol Cell 10: 1851–1857, 1999. doi:10.1091/MBC.10.6.1851. PubMed DOI PMC
Vaynman S, Ying Z, Gómez-Pinilla F. Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res 76: 356–362, 2004. doi:10.1002/JNR.20077. PubMed DOI
Griffin E, Bechara R, Birch A, Kelly A. Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19: 973–980, 2009. doi:10.1002/HIPO.20631. PubMed DOI
Cutuli D, Landolfo E, Petrosini L, Gelfo F. Environmental enrichment effects on the brain-derived neurotrophic factor expression in healthy condition, Alzheimer’s disease, and other neurodegenerative disorders. J Alzheimers Dis 85: 975–992, 2022. doi:10.3233/JAD-215193. PubMed DOI
Geoffroy CG, Zheng B. Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 27: 31–38, 2014. doi:10.1016/J.CONB.2014.02.012. PubMed DOI PMC
Moreau-Fauvarque C, Kumanogoh A, Camand E, Jaillard C, Barbin G, Boquet I, Love C, Jones Y, Kikutani H, Lubetzki C, Dusart I, Chédotal A. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 23: 9229–9239, 2003. doi:10.1523/JNEUROSCI.23-27-09229.2003. PubMed DOI PMC
Brückner G, Hausen D, Härtig W, Drlicek M, Arendt T, Brauer K. Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer’s disease. Neuroscience 92: 791–805, 1999. doi:10.1016/S0306-4522(99)00071-8. PubMed DOI
Yamada J, Jinno S. Subclass-specific formation of perineuronal nets around parvalbumin-expressing GABAergic neurons in Ammon’s horn of the mouse hippocampus. J Comp Neurol 523: 790–804, 2015. doi:10.1002/CNE.23712. PubMed DOI
Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM. Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J Neurosci 36: 6312–6320, 2016. doi:10.1523/JNEUROSCI.0245-16.2016. PubMed DOI PMC
Irvine SF, Kwok JCF. Perineuronal nets in spinal motoneurones: chondroitin sulphate proteoglycan around alpha motoneurones. Int J Mol Sci 19: 1172, 2018. doi:10.3390/IJMS19041172. PubMed DOI PMC
Mulherkar S, Tolias KF. RhoA-ROCK signaling as a therapeutic target in traumatic brain injury. Cells 9: 245, 2020. doi:10.3390/CELLS9010245. PubMed DOI PMC
Khuu MA, Pagan CM, Nallamothu T, Hevner RF, Hodge RD, Ramirez JM, Garcia AJ. Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus. J Neurosci 39: 1320–1331, 2019. doi:10.1523/JNEUROSCI.1359-18.2018. PubMed DOI PMC
Khuu MA, Nallamothu T, Castro-Rivera CI, Arias-Cavieres A, Szujewski CC, Garcia AJ. Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis. Sci Rep 11: 6005, 2021. doi:10.1038/S41598-021-85357-5. PubMed DOI PMC
Cai X-H, Zhou Y-H, Zhang C-X, Hu L-G, Fan X-F, Li C-C, Zheng G-Q, Gong Y-S. Chronic intermittent hypoxia exposure induces memory impairment in growing rats. Acta Neurobiol Exp (Wars) 70: 279–287, 2010. doi:10.55782/ane-2010-1799. PubMed DOI
Zhang X-Y, Zhang X-J, Xv J, Jia W, Pu X-Y, Wang H-Y, Liang H, Zhuoma-Lamao, Lu D-X. Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits of rats. Eur J Pharmacol 818: 300–305, 2018. doi:10.1016/j.ejphar.2017.10.042. PubMed DOI
Zhao Y, Yang S, Guo Q, Guo Y, Zheng Y, Ji E. Shashen-Maidong Decoction improved chronic intermittent hypoxia-induced cognitive impairment through regulating glutamatergic signaling pathway. J Ethnopharmacol 274: 114040, 2021. doi:10.1016/j.jep.2021.114040. PubMed DOI
Kazim SF, Sharma A, Saroja SR, Seo JH, Larson CS, Ramakrishnan A, Wang M, Blitzer RD, Shen L, Peña CJ, Crary JF, Shimoda LA, Zhang B, Nestler EJ, Pereira AC. Chronic intermittent hypoxia enhances pathological tau seeding, propagation, and accumulation and exacerbates Alzheimer-like memory and synaptic plasticity deficits and molecular signatures. Biol Psychiatry 91: 346–358, 2022. doi:10.1016/j.biopsych.2021.02.973. PubMed DOI PMC
Xu L, Li Q, Ke Y, Yung WH. Chronic intermittent hypoxia-induced aberrant neural activities in the hippocampus of male rats revealed by long-term in vivo recording. Front Cell Neurosci 15: 784045, 2021. doi:10.3389/FNCEL.2021.784045. PubMed DOI PMC
Dobashi K, Fujii N, Watanabe K, Tsuji B, Sasaki Y, Fujimoto T, Tanigawa S, Nishiyasu T. Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Eur J Appl Physiol 117: 1573–1583, 2017. doi:10.1007/S00421-017-3646-5. PubMed DOI
National Research Council Committee (US). Recognition and assessment of stress and distress. In: Recognition and Alleviation of Distress in Laboratory Animals. Washington, DC: The National Academies Press, 2008.
Sotocinal SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, Mapplebeck JCS, Wei P, Zhan S, Zhang S, McDougall JJ, King OD, Mogil JS. The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 7: 55, 2011. doi:10.1186/1744-8069-7-55. PubMed DOI PMC
Kwok JCF, Dick G, Wang D, Fawcett JW. Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 71: 1073–1089, 2011. doi:10.1002/DNEU.20974. PubMed DOI
Carulli D, Broersen R, de Winter F, Muir EM, Meškovic M, de Waal M, de Vries S, Boele HJ, Canto CB, de Zeeuw CI, Verhaagen J. Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proc Natl Acad Sci USA 117: 6855–6865, 2020. [Erratum in Proc Natl Acad Sci USA 120: e2304261120, 2023]. doi:10.1073/pnas.1916163117. PubMed DOI PMC
Romberg C, Yang S, Melani R, Andrews MR, Horner AE, Spillantini MG, Bussey TJ, Fawcett JW, Pizzorusso T, Saksida LM. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J Neurosci 33: 7057–7065, 2013. doi:10.1523/JNEUROSCI.6267-11.2013. PubMed DOI PMC
Rowlands D, Lensjø KK, Dinh T, Yang S, Andrews MR, Hafting T, Fyhn M, Fawcett JW, Dick G. Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci 38: 10102–10113, 2018. doi:10.1523/JNEUROSCI.1122-18.2018. PubMed DOI PMC
Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman BA, Mage R, Rader C, Giger RJ. The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci 25: 808–822, 2005. doi:10.1523/JNEUROSCI.4464-04.2005. PubMed DOI PMC
Wills ZP, Mandel-Brehm C, Mardinly AR, Mccord AE, Giger RJ, Greenberg ME. The nogo receptor family restricts synapse number in the developing hippocampus. Neuron 73: 466–481, 2012. doi:10.1016/j.neuron.2011.11.029. PubMed DOI PMC
Borrie SC, Sartori SB, Lehmann J, Sah A, Singewald N, Bandtlow CE. Loss of Nogo receptor homolog NgR2 alters spine morphology of CA1 neurons and emotionality in adult mice. Front Behav Neurosci 8: 175, 2014. doi:10.3389/fnbeh.2014.00175. PubMed DOI PMC
Mahmmoud RR, Sase S, Aher YD, Sase A, Gröger M, Mokhtar M, Höger H, Lubec G. Spatial and working memory is linked to spine density and mushroom spines. PLoS One 10: e0139739, 2015. doi:10.1371/journal.pone.0139739. PubMed DOI PMC
Bouslama M, Adla-Biassette H, Ramanantsoa N, Bourgeois T, Bollen B, Brissaud O, Matrot B, Gressens P, Gallego J. Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity. Front Physiol 6: 313, 2015. [Erratum in Front Physiol 7: 105, 2016]. doi:10.3389/FPHYS.2015.00313. PubMed DOI PMC
Vaccaro G, Dumoulin A, Zuñiga NR, Bandtlow CE, Stoeckli ET. The Nogo-66 receptors NgR1 and NgR3 are required for commissural axon pathfinding. J Neurosci 42: 4087–4100, 2022. doi:10.1523/JNEUROSCI.1390-21.2022. PubMed DOI PMC
Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy JM, Pepinsky RB. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8: 745–751, 2005. doi:10.1038/nn1460. PubMed DOI
Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7: 221–228, 2004. doi:10.1038/nn1188. PubMed DOI
Fernandez-Enright F, Andrews JL, Newell KA, Pantelis C, Huang XF. Novel implications of Lingo-1 and its signaling partners in schizophrenia. Transl Psychiatry 4: e348–e348, 2014. 2014 4:1 doi:10.1038/tp.2013.121. PubMed DOI PMC
Zhu J, Zhu Z, Ren Y, Dong Y, Li Y, Yang X. LINGO-1 shRNA protects the brain against ischemia/reperfusion injury by inhibiting the activation of NF-κB and JAK2/STAT3. Hum Cell 34: 1114–1122, 2021. doi:10.1007/S13577-021-00527-X/FIGURES/6. PubMed DOI PMC
Zhou YN, Jiang L, Zhang Y, Zhou CN, Yang H, He Q, Wang YY, Xiao Q, Huang DJ, Luo YM, Tang Y, Chao FL. Anti-LINGO-1 antibody protects neurons and synapses in the medial prefrontal cortex of APP/PS1 transgenic mice. Neurosci Res 193: 28–40, 2023. doi:10.1016/j.neures.2023.02.005. PubMed DOI
Inoue H, Lin L, Lee X, Shao Z, Mendes S, Snodgrass-Belt P, Sweigard H, Engber T, Pepinsky B, Yang L, Beal MF, Mi S, Isacson O. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson’s disease models. Proc Natl Acad Sci USA 104: 14430–14435, 2007. doi:10.1073/PNAS.0700901104. PubMed DOI PMC
Li B, Xu Y, Quan Y, Cai Q, Le Y, Ma T, Liu Z, Wu G, Wang F, Bao C, Li H. Inhibition of RhoA/ROCK pathway in the early stage of hypoxia ameliorates depression in mice via protecting myelin sheath. ACS Chem Neurosci 11: 2705–2716, 2020. doi:10.1021/ACSCHEMNEURO.0C00352. PubMed DOI
Zhang K, Zhou Y, Zhao T, Wu L, Huang X, Wu K, Xu L, Li D, Liu S, Zhao Y, Fan M, Zhu L. Reduced cerebral oxygen content in the DG and SVZ in situ promotes neurogenesis in the adult rat brain in vivo. PLoS One 10: e0140035, 2015. doi:10.1371/journal.pone.0140035. PubMed DOI PMC