Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
- MeSH
- hipokampus * metabolismus MeSH
- hypoxie metabolismus patofyziologie MeSH
- kinázy asociované s rho * metabolismus genetika MeSH
- krysa rodu rattus MeSH
- mícha metabolismus fyziologie MeSH
- mozková kůra metabolismus fyziologie MeSH
- neuroplasticita fyziologie MeSH
- potkani Wistar * MeSH
- rho proteiny vázající GTP MeSH
- rhoA protein vázající GTP metabolismus MeSH
- signální transdukce * fyziologie MeSH
- vysoce intenzivní intervalový trénink * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: NASH is the progressive form of NAFLD characterized by lipotoxicity, hepatocyte injury, tissue inflammation, and fibrosis. Previously, Rho-associated protein kinase (ROCK) 1 has been implicated in lipotoxic signaling in hepatocytes in vitro and high-fat diet-induced lipogenesis in vivo. However, whether ROCK1 plays a role in liver inflammation and fibrosis during NASH is unclear. Here, we hypothesized that pathogenic activation of ROCK1 promotes murine NASH pathogenesis. METHODS AND RESULTS: Patients with NASH had increased hepatic ROCK1 expression compared with patients with fatty liver. Similarly, hepatic ROCK1 levels and activity were increased in mice with NASH induced by a western-like diet that is high in fat, fructose, and cholesterol (FFC). Hepatocyte-specific ROCK1 knockout mice on the FFC diet displayed a decrease in liver steatosis, hepatic cell death, liver inflammation, and fibrosis compared with littermate FFC-fed controls. Mechanistically, these effects were associated with a significant attenuation of myeloid cell recruitment. Interestingly, myeloid cell-specific ROCK1 deletion did not affect NASH development in FFC-fed mice. To explore the therapeutic opportunities, mice with established NASH received ROCKi, a novel small molecule kinase inhibitor of ROCK1/2, which preferentially accumulates in liver tissue. ROCK inhibitor treatment ameliorated insulin resistance and decreased liver injury, inflammation, and fibrosis. CONCLUSIONS: Genetic or pharmacologic inhibition of ROCK1 activity attenuates murine NASH, suggesting that ROCK1 may be a therapeutic target for treating human NASH.
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- fibróza MeSH
- hepatocyty metabolismus MeSH
- kinázy asociované s rho * antagonisté a inhibitory genetika MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- nealkoholová steatóza jater * farmakoterapie enzymologie MeSH
- zánět farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Lung fibrosis is a serious human pathology. MiR-146b-5p is down-regulated in idiopathic pulmonary fibrosis, and the Notch1/PDGFRβ/ROCK1 pathway is activated. However, the relation between miR-146b-5p and the Notch1/PDGFRβ/ROCK1 pathway in lung fibrosis remains unclear. To investigate the function of miR-146b-5p in lung fibrosis, an in vivo model of lung fibrosis was established in mice by bleomycin. The fibrosis in lung tissues of mice was observed by HE, Masson and Sirius Red staining. Lung pericytes were isolated and identified by fluorescence microscopy. Immunofluorescence staining and Western blot were used to investigate the expression of desmin, NG2, collagen I and α-SMA. CCK8 assay was used to assess the cell viability, and flow cytometry was performed to evaluate the cell cycle in pericytes. Furthermore, the correlation between miR-146b-5p and Notch1 was analysed by Spearman analysis. The mechanism by which miR-146b-5p affects pericytes and lung fibrosis via the Notch1/ PDGFRβ/ROCK1 pathway was explored by RT-qPCR, Western blot, immunofluorescence staining and dual luciferase reporter gene assay. In bleomycin-treated mice, miR-146b-5p was down-regulated, while Notch1 was up-regulated. Up-regulation of miR-146b-5p significantly inhibited the viability and induced G1 phase arrest of lung pericytes. MiR-146b-5p mimics up-regulated miR-146b-5p, desmin, and NG2 and down-regulated α-SMA and collagen I in the lung pericytes. Additionally, miR-146b-5p was negatively correlated with Notch1, and miR-146b-5p interacted with Notch1. Over-expression of miR-146b-5p inactivated the Notch1/PDGFRβ/ROCK1 pathway. Our results indicate that up-regulation of miR-146b-5p inhibits fibrosis in lung pericytes via modulation of the Notch1/PDGFRβ/ROCK1 pathway. Thus, our study might provide a novel target against lung fibrosis.
- MeSH
- bleomycin metabolismus MeSH
- desmin genetika metabolismus MeSH
- kinázy asociované s rho genetika metabolismus MeSH
- kolagen genetika metabolismus MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- myši MeSH
- pericyty metabolismus patologie MeSH
- plíce metabolismus patologie MeSH
- plicní fibróza * genetika metabolismus patologie MeSH
- receptor Notch1 genetika metabolismus MeSH
- upregulace genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Calcium sensitization mediated by RhoA/Rho kinase pathway can be evaluated either in the absence (basal calcium sensitization) or in the presence of endogenous vasoconstrictor systems (activated calcium sensitization). Our aim was to compare basal and activated calcium sensitization in three forms of experimental hypertension with increased sympathetic tone and enhanced calcium entry-spontaneously hypertensive rats (SHR), heterozygous Ren-2 transgenic rats (TGR), and salt hypertensive Dahl rats. Activated calcium sensitization was determined as blood pressure reduction induced by acute administration of Rho kinase inhibitor fasudil in conscious rats with intact sympathetic nervous system (SNS) and renin-angiotensin system (RAS). Basal calcium sensitization was studied as fasudil-dependent difference in blood pressure response to calcium channel opener BAY K8644 in rats subjected to RAS and SNS blockade. Calcium sensitization was also estimated from reduced development of isolated artery contraction by Rho kinase inhibitor Y-27632. Activated calcium sensitization was enhanced in all three hypertensive models (due to the hyperactivity of vasoconstrictor systems). In contrast, basal calcium sensitization was reduced in SHR and TGR relative to their controls, whereas it was augmented in salt-sensitive Dahl rats relative to their salt-resistant controls. Similar differences in calcium sensitization were seen in femoral arteries of SHR and Dahl rats.
- MeSH
- geneticky modifikovaná zvířata MeSH
- hypertenze etiologie genetika metabolismus patologie MeSH
- kinázy asociované s rho antagonisté a inhibitory genetika MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- potkani inbrední Dahl MeSH
- potkani inbrední SHR MeSH
- signální transdukce účinky léků MeSH
- sympatický nervový systém metabolismus patologie MeSH
- vápník aplikace a dávkování metabolismus MeSH
- vazokonstrikce genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The differential activity of the Hippo-signalling pathway between the outer- and inner-cell populations of the developing preimplantation mouse embryo directs appropriate formation of trophectoderm and inner cell mass (ICM) lineages. Such distinct signalling activity is under control of intracellular polarization, whereby Hippo-signalling is either supressed in polarized outer cells or activated in apolar inner cells. The central role of apical-basolateral polarization to such differential Hippo-signalling regulation prompted us to reinvestigate the role of potential upstream molecular regulators affecting apical-basolateral polarity. This study reports that the chemical inhibition of Rho-associated kinase (Rock) is associated with failure to form morphologically distinct blastocysts, indicative of compromised trophectoderm differentiation, and defects in the localization of both apical and basolateral polarity factors associated with malformation of tight junctions. Moreover, Rock-inhibition mediates mislocalization of the Hippo-signalling activator Angiomotin (Amot), to the basolateral regions of outer cells and is concomitant with aberrant activation of the pathway. The Rock-inhibition phenotype is mediated by Amot, as RNAi-based Amot knockdown totally rescues the normal suppression of Hippo-signalling in outer cells. In conclusion, Rock, via regulating appropriate apical-basolateral polarization in outer cells, regulates the appropriate activity of the Hippo-signalling pathway, by ensuring correct subcellular localization of Amot protein in outer cells.
- MeSH
- blastocysta metabolismus MeSH
- embryonální vývoj * MeSH
- kinázy asociované s rho genetika metabolismus fyziologie MeSH
- mezibuněčné signální peptidy a proteiny analýza metabolismus MeSH
- mikrofilamentové proteiny analýza metabolismus MeSH
- myši MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tumor cell invasion is the most critical step of metastasis. Determination of the mode of invasion within the particular tumor is critical for effective cancer treatment. Protease-independent amoeboid mode of invasion has been described in carcinoma cells and more recently in sarcoma cells on treatment with protease inhibitors. To analyze invasive behavior, we compared highly metastatic sarcoma cells with parental nonmetastatic cells. The metastatic cells exhibited a functional up-regulation of Rho/ROCK signaling and, similarly to carcinoma cells, an amoeboid mode of invasion. Using confocal and traction force microscopy, we showed that an up-regulation of Rho/ROCK signaling leads to increased cytoskeletal dynamics, myosin light chain localization, and increased tractions at the leading edge of the cells and that all of these contributed to increased cell invasiveness in a three-dimensional collagen matrix. We conclude that cells of mesenchymal origin can use the amoeboid nonmesenchymal mode of invasion as their primary invading mechanism and show the dependence of ROCK-mediated amoeboid mode of invasion on the increased capacity of cells to generate force.
- MeSH
- aktiny metabolismus MeSH
- buněčná adheze fyziologie MeSH
- čipová analýza proteinů MeSH
- cytoskelet metabolismus patologie MeSH
- faktory depolymerizující aktin metabolismus MeSH
- financování organizované MeSH
- fluorescenční mikroskopie MeSH
- fosforylace MeSH
- invazivní růst nádoru MeSH
- kinázy asociované s rho genetika metabolismus MeSH
- kolagen metabolismus MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lehké řetězce myosinu metabolismus MeSH
- Lim-kinasy genetika metabolismus MeSH
- magnetismus MeSH
- matrixová metaloproteinasa 2 metabolismus MeSH
- mezenchymální kmenové buňky metabolismus patologie MeSH
- pohyb buněk fyziologie MeSH
- rho proteiny vázající GTP genetika metabolismus MeSH
- sarkom metabolismus patologie MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH