Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones

. 2018 Apr 12 ; 19 (4) : . [epub] 20180412

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29649136

Grantová podpora
MC_PC_16050 Medical Research Council - United Kingdom
MC_PC_17165 Medical Research Council - United Kingdom

Perineuronal nets (PNNs) are extracellular matrix structures surrounding neuronal sub-populations throughout the central nervous system, regulating plasticity. Enzymatically removing PNNs successfully enhances plasticity and thus functional recovery, particularly in spinal cord injury models. While PNNs within various brain regions are well studied, much of the composition and associated populations in the spinal cord is yet unknown. We aim to investigate the populations of PNN neurones involved in this functional motor recovery. Immunohistochemistry for choline acetyltransferase (labelling motoneurones), PNNs using Wisteria floribunda agglutinin (WFA) and chondroitin sulphate proteoglycans (CSPGs), including aggrecan, was performed to characterise the molecular heterogeneity of PNNs in rat spinal motoneurones (Mns). CSPG-positive PNNs surrounded ~70-80% of Mns. Using WFA, only ~60% of the CSPG-positive PNNs co-localised with WFA in the spinal Mns, while ~15-30% of Mns showed CSPG-positive but WFA-negative PNNs. Selective labelling revealed that aggrecan encircled ~90% of alpha Mns. The results indicate that (1) aggrecan labels spinal PNNs better than WFA, and (2) there are differences in PNN composition and their associated neuronal populations between the spinal cord and cortex. Insights into the role of PNNs and their molecular heterogeneity in the spinal motor pools could aid in designing targeted strategies to enhance functional recovery post-injury.

Zobrazit více v PubMed

Celio M.R., Spreafico R., De Biasi S., Vitellaro-Zuccarello L. Perineuronal nets: Past and present. Trends Neurosci. 1998;21:510–515. doi: 10.1016/S0166-2236(98)01298-3. PubMed DOI

Suttkus A., Rohn S., Weigel S., Glöckner P., Arendt T., Morawski M. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis. 2014;5 doi: 10.1038/cddis.2014.25. PubMed DOI PMC

Cabungcal J.-H.H., Steullet P., Morishita H., Kraftsik R., Cuenod M., Hensch T.K., Do K.Q. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc. Natl. Acad. Sci. USA. 2013;110:9130–9135. doi: 10.1073/pnas.1300454110. PubMed DOI PMC

Pantazopoulos H., Berretta S. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast. 2016;2016:9847696. doi: 10.1155/2016/9847696. PubMed DOI PMC

McRae P.A., Porter B.E. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem. Int. 2012;61:963–972. doi: 10.1016/j.neuint.2012.08.007. PubMed DOI PMC

Moon L.D.F., Asher R.A., Rhodes K.E., Fawcett J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 2001;4:465–466. doi: 10.1038/87415. PubMed DOI

Bradbury E.J., Moon L.D., Popat R.J., King V.R., Bennett G.S., Patel P.N., Fawcett J.W., McMahon S.B. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI

García-Alías G., Barkhuysen S., Buckle M., Fawcett J.W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 2009;12:1145–1151. doi: 10.1038/nn.2377. PubMed DOI

Carulli D., Pizzorusso T., Kwok J.C., Putignano E., Poli A., Forostyak S., Andrews M.R., Deepa S.S., Glant T.T., Fawcett J.W. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133:2331–2347. doi: 10.1093/brain/awq145. PubMed DOI

Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J.W., Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI

Tsien R.Y. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc. Natl. Acad. Sci. USA. 2013;110:12456–12461. doi: 10.1073/pnas.1310158110. PubMed DOI PMC

Giamanco K.A., Morawski M., Matthews R.T. Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience. 2010;170:1314–1327. doi: 10.1016/j.neuroscience.2010.08.032. PubMed DOI

Kwok J.C., Carulli D., Fawcett J.W. In vitro modeling of perineuronal nets: Hyaluronan synthase and link protein are necessary for their formation and integrity. J. Neurochem. 2010;114:1447–1459. doi: 10.1111/j.1471-4159.2010.06878.x. PubMed DOI

Kwok J.C., Dick G., Wang D., Fawcett J.W. Extracellular matrix and perineuronal nets in CNS repair. Dev. Neurobiol. 2011;71:1073–1089. doi: 10.1002/dneu.20974. PubMed DOI

Yamaguchi Y. Lecticans: Organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 2000;57:276–289. doi: 10.1007/PL00000690. PubMed DOI PMC

Kitagawa H. Using sugar remodeling to study chondroitin sulfate function. Biol. Pharm. Bull. 2014;37:1705–1712. doi: 10.1248/bpb.b14-00613. PubMed DOI

Gama C.I., Tully S.E., Sotogaku N., Clark P.M., Rawat M., Vaidehi N., Goddard W.A., Nishi A., Hsieh-Wilson L.C. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat. Chem. Biol. 2006;2:467–473. doi: 10.1038/nchembio810. PubMed DOI

Deepa S.S., Carulli D., Galtrey C., Rhodes K., Fukuda J., Mikami T., Sugahara K., Fawcett J.W. Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net-associated proteoglycans. J. Biol. Chem. 2006;281:17789–17800. doi: 10.1074/jbc.M600544200. PubMed DOI

Carulli D., Rhodes K.E., Brown D.J., Bonnert T.P., Pollack S.J., Oliver K., Strata P., Fawcett J.W. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 2006;494:559–577. doi: 10.1002/cne.20822. PubMed DOI

Fader S.M., Imaizumi K., Yanagawa Y., Lee C.C. Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sci. 2016;6:13. doi: 10.3390/brainsci6020013. PubMed DOI PMC

Yamada J., Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J. Comp. Neurol. 2017;525:1234–1249. doi: 10.1002/cne.24132. PubMed DOI

Vitellaro-Zuccarello L., Bosisio P., Mazzetti S., Monti C., De Biasi S. Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord. Cell Tissue Res. 2007;327:433–447. doi: 10.1007/s00441-006-0289-y. PubMed DOI

Brauer K., Härtig W., Bigl V., Brückner G. Distribution of parvalbumin-containing neurons and lectin-binding perineuronal nets in the rat basal forebrain. Brain Res. 1993;631:167–170. doi: 10.1016/0006-8993(93)91205-7. PubMed DOI

Yamada J., Ohgomori T., Jinno S. Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus. Eur. J. Neurosci. 2015;41:368–378. doi: 10.1111/ejn.12792. PubMed DOI

Galtrey C.M., Kwok J.C., Carulli D., Rhodes K.E., Fawcett J.W. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 2008;27:1373–1390. doi: 10.1111/j.1460-9568.2008.06108.x. PubMed DOI

Bertolotto A., Manzardo E., Guglielmone R. Immunohistochemical mapping of perineuronal nets containing chondroitin unsulfate proteoglycan in the rat central nervous system. Cell Tissue Res. 1996;283:283–295. doi: 10.1007/s004410050538. PubMed DOI

Takahashi-Iwanaga H., Murakami T., Abe K. Three-dimensional microanatomy of perineuronal proteoglycan nets enveloping motor neurons in the rat spinal cord. J. Neurocytol. 1998;27:817–827. doi: 10.1023/A:1006955414939. PubMed DOI

Manuel M., Zytnicki D. Alpha, beta and gamma motoneurons: Functional diversity in the motor system’s final pathway. J. Integr. Neurosci. 2011;10:243–276. doi: 10.1142/S0219635211002786. PubMed DOI

Zhao R.-R.R., Andrews M.R., Wang D., Warren P., Gullo M., Schnell L., Schwab M.E., Fawcett J.W. Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur. J. Neurosci. 2013;38:2946–2961. doi: 10.1111/ejn.12276. PubMed DOI

Barritt A.W., Davies M., Marchand F., Hartley R., Grist J., Yip P., McMahon S.B., Bradbury E.J. Chondroitinase ABC Promotes Sprouting of Intact and Injured Spinal Systems after Spinal Cord Injury. J. Neurosci. 2006;26:10856–10867. doi: 10.1523/JNEUROSCI.2980-06.2006. PubMed DOI PMC

Smith C.C., Mauricio R., Nobre L., Marsh B., Wüst R.C., Rossiter H.B., Ichiyama R.M. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res. Bull. 2015;111:20–26. doi: 10.1016/j.brainresbull.2014.12.005. PubMed DOI

Wang D., Ichiyama R.M., Zhao R., Andrews M.R., Fawcett J.W. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 2011;31:9332–9344. doi: 10.1523/JNEUROSCI.0983-11.2011. PubMed DOI PMC

Barber R.P., Phelps P.E., Houser C.R., Crawford G.D., Salvaterra P.M., Vaughn J.E. The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: An immunocytochemical study. J. Comp. Neurol. 1984;229:329–346. doi: 10.1002/cne.902290305. PubMed DOI

Koppe G., Bruckner G., Hartig W., Delpech B., Bigl V. Characterization of proteoglycan-containing perineuronal nets by enzymatic treatments of rat brain sections. Histochem. J. 1997;29:11–20. doi: 10.1023/A:1026408716522. PubMed DOI

Morawski M., Brückner G., Arendt T., Matthews R.T. Aggrecan: Beyond cartilage and into the brain. Int. J. Biochem. Cell Biol. 2012;44:690–693. doi: 10.1016/j.biocel.2012.01.010. PubMed DOI

Lendvai D., Morawski M., Négyessy L., Gáti G., Jäger C., Baksa G., Glasz T., Attems J., Tanila H., Arendt T., et al. Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer’s disease. Acta Neuropathol. 2013;125:215–229. doi: 10.1007/s00401-012-1042-0. PubMed DOI PMC

Favuzzi E., Marques-Smith A., Deogracias R., Winterflood C.M., Sánchez-Aguilera A., Mantoan L., Maeso P., Fernandes C., Ewers H., Rico B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron. 2017;95 doi: 10.1016/j.neuron.2017.06.028. PubMed DOI

Asher R.A., Morgenstern D.A., Fidler P.S., Adcock K.H., Oohira A., Braistead J.E., Levine J.M., Margolis R.U., Rogers J.H., Fawcett J.W. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 2000;20:2427–2438. doi: 10.1523/JNEUROSCI.20-07-02427.2000. PubMed DOI PMC

Dours-Zimmermann M.T., Maurer K., Rauch U., Stoffel W., Fässler R., Zimmermann D.R. Versican V2 Assembles the Extracellular Matrix Surrounding the Nodes of Ranvier in the CNS. J. Neurosci. 2009;29:7731–7742. doi: 10.1523/JNEUROSCI.4158-08.2009. PubMed DOI PMC

Asher R.A., Morgenstern D.A., Shearer M.C., Adcock K.H., Pesheva P., Fawcett J.W. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J. Neurosci. 2002;22:2225–2236. PubMed PMC

Maurel P., Rauch U., Flad M., Margolis R.K., Margolis R.U. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc. Natl. Acad. Sci. USA. 1994;91:2512–2516. doi: 10.1073/pnas.91.7.2512. PubMed DOI PMC

Dwyer C.A., Katoh T., Tiemeyer M., Matthews R.T. Neurons and Glia Modify Receptor Protein-tyrosine Phosphatase ζ (RPTPζ)/Phosphacan with Cell-specific O-Mannosyl Glycans in the Developing Brain. J. Biol. Chem. 2015;290:10256–10273. doi: 10.1074/jbc.M114.614099. PubMed DOI PMC

Haunsø A., Celio M.R., Margolis R.K., Menoud P.-A. Phosphacan immunoreactivity is associated with perineuronal nets around parvalbumin-expressing neurones. Brain Res. 1999;834:219–222. doi: 10.1016/S0006-8993(99)01596-6. PubMed DOI

Friese A., Kaltschmidt J.A., Ladle D.R., Sigrist M., Jessell T.M., Arber S. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc. Natl. Acad. Sci. USA. 2009;106:13588–13593. doi: 10.1073/pnas.0906809106. PubMed DOI PMC

Mueller A.L., Davis A., Sovich S., Carlson S.S., Robinson F.R. Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications. Neural Plast. 2016;2016 doi: 10.1155/2016/6021428. PubMed DOI PMC

Jäger C., Lendvai D., Seeger G., Brückner G., Matthews R.T., Arendt T., Alpár A., Morawski M. Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience. 2013;238:168–184. doi: 10.1016/j.neuroscience.2013.02.014. PubMed DOI

Shneider N.A., Brown M.N., Smith C.A., Pickel J., Alvarez F.J. Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Dev. 2009;4:42. doi: 10.1186/1749-8104-4-42. PubMed DOI PMC

Eccles J.C., Eccles R.M., Iggo A., Lundberg A. Electrophysiological studies on gamma motoneurones. Acta Physiol. Scand. 1960;50:32–40. doi: 10.1111/j.1748-1716.1960.tb02070.x. PubMed DOI

Misawa H., Hara M., Tanabe S., Niikura M., Moriwaki Y., Okuda T. Osteopontin is an alpha motor neuron marker in the mouse spinal cord. J. Neurosci. Res. 2012;90:732–742. doi: 10.1002/jnr.22813. PubMed DOI

Härtig W., Brauer K., Brückner G. Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport. 1992;3:869–872. doi: 10.1097/00001756-199210000-00012. PubMed DOI

Kalb R.G., Hockfield S. Molecular evidence for early activity-dependent development of hamster motor neurons. J. Neurosci. 1988;8:2350–2360. doi: 10.1523/JNEUROSCI.08-07-02350.1988. PubMed DOI PMC

Matthews R.T., Kelly G.M., Zerillo C.A., Gray G., Tiemeyer M., Hockfield S. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J. Neurosci. 2002;22:7536–7547. PubMed PMC

Bignami A., Perides G., Rahemtulla F. Versican, a hyaluronate-binding proteoglycan of embryonal precartilaginous mesenchyma, is mainly expressed postnatally in rat brain. J. Neurosci. Res. 1993;34:97–106. doi: 10.1002/jnr.490340110. PubMed DOI

Ueno H., Suemitsu S., Okamoto M., Matsumoto Y., Ishihara T. Sensory experience-dependent formation of perineuronal nets and expression of Cat-315 immunoreactive components in the mouse somatosensory cortex. Neuroscience. 2017;355:161–174. doi: 10.1016/j.neuroscience.2017.04.041. PubMed DOI

Dauth S., Grevesse T., Pantazopoulos H., Campbell P.H., Maoz B.M., Berretta S., Parker K.K. Extracellular matrix protein expression is brain region dependent. J. Comp. Neurol. 2016;524:1309–1336. doi: 10.1002/cne.23965. PubMed DOI PMC

Gage G.J., Kipke D.R., Shain W. Whole animal perfusion fixation for rodents. J. Vis. Exp. 2012 doi: 10.3791/3564. PubMed DOI PMC

Phelps P.E., Barber R.P., Houser C.R., Crawford G.D., Salvaterra P.M., Vaughn J.E. Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: An immunocytochemical study. J. Comp. Neurol. 1984;229:347–361. doi: 10.1002/cne.902290306. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Mullen R.J., Buck C.R., Smith A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116:201–211. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace