Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MC_PC_16050
Medical Research Council - United Kingdom
MC_PC_17165
Medical Research Council - United Kingdom
PubMed
29649136
PubMed Central
PMC5979458
DOI
10.3390/ijms19041172
PII: ijms19041172
Knihovny.cz E-zdroje
- Klíčová slova
- alpha motoneurone, chondroitin sulphate proteoglycans, gamma motoneurone, perineuronal nets, spinal cord,
- MeSH
- cholin-O-acetyltransferasa metabolismus MeSH
- chondroitinsulfát proteoglykany metabolismus MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- extracelulární matrix metabolismus MeSH
- krysa rodu Rattus MeSH
- mícha cytologie metabolismus MeSH
- motorické neurony cytologie metabolismus MeSH
- neuroplasticita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholin-O-acetyltransferasa MeSH
- chondroitinsulfát proteoglykany MeSH
- extracelulární matrix - proteiny MeSH
Perineuronal nets (PNNs) are extracellular matrix structures surrounding neuronal sub-populations throughout the central nervous system, regulating plasticity. Enzymatically removing PNNs successfully enhances plasticity and thus functional recovery, particularly in spinal cord injury models. While PNNs within various brain regions are well studied, much of the composition and associated populations in the spinal cord is yet unknown. We aim to investigate the populations of PNN neurones involved in this functional motor recovery. Immunohistochemistry for choline acetyltransferase (labelling motoneurones), PNNs using Wisteria floribunda agglutinin (WFA) and chondroitin sulphate proteoglycans (CSPGs), including aggrecan, was performed to characterise the molecular heterogeneity of PNNs in rat spinal motoneurones (Mns). CSPG-positive PNNs surrounded ~70-80% of Mns. Using WFA, only ~60% of the CSPG-positive PNNs co-localised with WFA in the spinal Mns, while ~15-30% of Mns showed CSPG-positive but WFA-negative PNNs. Selective labelling revealed that aggrecan encircled ~90% of alpha Mns. The results indicate that (1) aggrecan labels spinal PNNs better than WFA, and (2) there are differences in PNN composition and their associated neuronal populations between the spinal cord and cortex. Insights into the role of PNNs and their molecular heterogeneity in the spinal motor pools could aid in designing targeted strategies to enhance functional recovery post-injury.
Zobrazit více v PubMed
Celio M.R., Spreafico R., De Biasi S., Vitellaro-Zuccarello L. Perineuronal nets: Past and present. Trends Neurosci. 1998;21:510–515. doi: 10.1016/S0166-2236(98)01298-3. PubMed DOI
Suttkus A., Rohn S., Weigel S., Glöckner P., Arendt T., Morawski M. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis. 2014;5 doi: 10.1038/cddis.2014.25. PubMed DOI PMC
Cabungcal J.-H.H., Steullet P., Morishita H., Kraftsik R., Cuenod M., Hensch T.K., Do K.Q. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc. Natl. Acad. Sci. USA. 2013;110:9130–9135. doi: 10.1073/pnas.1300454110. PubMed DOI PMC
Pantazopoulos H., Berretta S. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast. 2016;2016:9847696. doi: 10.1155/2016/9847696. PubMed DOI PMC
McRae P.A., Porter B.E. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem. Int. 2012;61:963–972. doi: 10.1016/j.neuint.2012.08.007. PubMed DOI PMC
Moon L.D.F., Asher R.A., Rhodes K.E., Fawcett J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 2001;4:465–466. doi: 10.1038/87415. PubMed DOI
Bradbury E.J., Moon L.D., Popat R.J., King V.R., Bennett G.S., Patel P.N., Fawcett J.W., McMahon S.B. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI
García-Alías G., Barkhuysen S., Buckle M., Fawcett J.W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 2009;12:1145–1151. doi: 10.1038/nn.2377. PubMed DOI
Carulli D., Pizzorusso T., Kwok J.C., Putignano E., Poli A., Forostyak S., Andrews M.R., Deepa S.S., Glant T.T., Fawcett J.W. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133:2331–2347. doi: 10.1093/brain/awq145. PubMed DOI
Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J.W., Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI
Tsien R.Y. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc. Natl. Acad. Sci. USA. 2013;110:12456–12461. doi: 10.1073/pnas.1310158110. PubMed DOI PMC
Giamanco K.A., Morawski M., Matthews R.T. Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience. 2010;170:1314–1327. doi: 10.1016/j.neuroscience.2010.08.032. PubMed DOI
Kwok J.C., Carulli D., Fawcett J.W. In vitro modeling of perineuronal nets: Hyaluronan synthase and link protein are necessary for their formation and integrity. J. Neurochem. 2010;114:1447–1459. doi: 10.1111/j.1471-4159.2010.06878.x. PubMed DOI
Kwok J.C., Dick G., Wang D., Fawcett J.W. Extracellular matrix and perineuronal nets in CNS repair. Dev. Neurobiol. 2011;71:1073–1089. doi: 10.1002/dneu.20974. PubMed DOI
Yamaguchi Y. Lecticans: Organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 2000;57:276–289. doi: 10.1007/PL00000690. PubMed DOI PMC
Kitagawa H. Using sugar remodeling to study chondroitin sulfate function. Biol. Pharm. Bull. 2014;37:1705–1712. doi: 10.1248/bpb.b14-00613. PubMed DOI
Gama C.I., Tully S.E., Sotogaku N., Clark P.M., Rawat M., Vaidehi N., Goddard W.A., Nishi A., Hsieh-Wilson L.C. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat. Chem. Biol. 2006;2:467–473. doi: 10.1038/nchembio810. PubMed DOI
Deepa S.S., Carulli D., Galtrey C., Rhodes K., Fukuda J., Mikami T., Sugahara K., Fawcett J.W. Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net-associated proteoglycans. J. Biol. Chem. 2006;281:17789–17800. doi: 10.1074/jbc.M600544200. PubMed DOI
Carulli D., Rhodes K.E., Brown D.J., Bonnert T.P., Pollack S.J., Oliver K., Strata P., Fawcett J.W. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 2006;494:559–577. doi: 10.1002/cne.20822. PubMed DOI
Fader S.M., Imaizumi K., Yanagawa Y., Lee C.C. Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sci. 2016;6:13. doi: 10.3390/brainsci6020013. PubMed DOI PMC
Yamada J., Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J. Comp. Neurol. 2017;525:1234–1249. doi: 10.1002/cne.24132. PubMed DOI
Vitellaro-Zuccarello L., Bosisio P., Mazzetti S., Monti C., De Biasi S. Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord. Cell Tissue Res. 2007;327:433–447. doi: 10.1007/s00441-006-0289-y. PubMed DOI
Brauer K., Härtig W., Bigl V., Brückner G. Distribution of parvalbumin-containing neurons and lectin-binding perineuronal nets in the rat basal forebrain. Brain Res. 1993;631:167–170. doi: 10.1016/0006-8993(93)91205-7. PubMed DOI
Yamada J., Ohgomori T., Jinno S. Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus. Eur. J. Neurosci. 2015;41:368–378. doi: 10.1111/ejn.12792. PubMed DOI
Galtrey C.M., Kwok J.C., Carulli D., Rhodes K.E., Fawcett J.W. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 2008;27:1373–1390. doi: 10.1111/j.1460-9568.2008.06108.x. PubMed DOI
Bertolotto A., Manzardo E., Guglielmone R. Immunohistochemical mapping of perineuronal nets containing chondroitin unsulfate proteoglycan in the rat central nervous system. Cell Tissue Res. 1996;283:283–295. doi: 10.1007/s004410050538. PubMed DOI
Takahashi-Iwanaga H., Murakami T., Abe K. Three-dimensional microanatomy of perineuronal proteoglycan nets enveloping motor neurons in the rat spinal cord. J. Neurocytol. 1998;27:817–827. doi: 10.1023/A:1006955414939. PubMed DOI
Manuel M., Zytnicki D. Alpha, beta and gamma motoneurons: Functional diversity in the motor system’s final pathway. J. Integr. Neurosci. 2011;10:243–276. doi: 10.1142/S0219635211002786. PubMed DOI
Zhao R.-R.R., Andrews M.R., Wang D., Warren P., Gullo M., Schnell L., Schwab M.E., Fawcett J.W. Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur. J. Neurosci. 2013;38:2946–2961. doi: 10.1111/ejn.12276. PubMed DOI
Barritt A.W., Davies M., Marchand F., Hartley R., Grist J., Yip P., McMahon S.B., Bradbury E.J. Chondroitinase ABC Promotes Sprouting of Intact and Injured Spinal Systems after Spinal Cord Injury. J. Neurosci. 2006;26:10856–10867. doi: 10.1523/JNEUROSCI.2980-06.2006. PubMed DOI PMC
Smith C.C., Mauricio R., Nobre L., Marsh B., Wüst R.C., Rossiter H.B., Ichiyama R.M. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res. Bull. 2015;111:20–26. doi: 10.1016/j.brainresbull.2014.12.005. PubMed DOI
Wang D., Ichiyama R.M., Zhao R., Andrews M.R., Fawcett J.W. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 2011;31:9332–9344. doi: 10.1523/JNEUROSCI.0983-11.2011. PubMed DOI PMC
Barber R.P., Phelps P.E., Houser C.R., Crawford G.D., Salvaterra P.M., Vaughn J.E. The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: An immunocytochemical study. J. Comp. Neurol. 1984;229:329–346. doi: 10.1002/cne.902290305. PubMed DOI
Koppe G., Bruckner G., Hartig W., Delpech B., Bigl V. Characterization of proteoglycan-containing perineuronal nets by enzymatic treatments of rat brain sections. Histochem. J. 1997;29:11–20. doi: 10.1023/A:1026408716522. PubMed DOI
Morawski M., Brückner G., Arendt T., Matthews R.T. Aggrecan: Beyond cartilage and into the brain. Int. J. Biochem. Cell Biol. 2012;44:690–693. doi: 10.1016/j.biocel.2012.01.010. PubMed DOI
Lendvai D., Morawski M., Négyessy L., Gáti G., Jäger C., Baksa G., Glasz T., Attems J., Tanila H., Arendt T., et al. Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer’s disease. Acta Neuropathol. 2013;125:215–229. doi: 10.1007/s00401-012-1042-0. PubMed DOI PMC
Favuzzi E., Marques-Smith A., Deogracias R., Winterflood C.M., Sánchez-Aguilera A., Mantoan L., Maeso P., Fernandes C., Ewers H., Rico B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron. 2017;95 doi: 10.1016/j.neuron.2017.06.028. PubMed DOI
Asher R.A., Morgenstern D.A., Fidler P.S., Adcock K.H., Oohira A., Braistead J.E., Levine J.M., Margolis R.U., Rogers J.H., Fawcett J.W. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 2000;20:2427–2438. doi: 10.1523/JNEUROSCI.20-07-02427.2000. PubMed DOI PMC
Dours-Zimmermann M.T., Maurer K., Rauch U., Stoffel W., Fässler R., Zimmermann D.R. Versican V2 Assembles the Extracellular Matrix Surrounding the Nodes of Ranvier in the CNS. J. Neurosci. 2009;29:7731–7742. doi: 10.1523/JNEUROSCI.4158-08.2009. PubMed DOI PMC
Asher R.A., Morgenstern D.A., Shearer M.C., Adcock K.H., Pesheva P., Fawcett J.W. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J. Neurosci. 2002;22:2225–2236. PubMed PMC
Maurel P., Rauch U., Flad M., Margolis R.K., Margolis R.U. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc. Natl. Acad. Sci. USA. 1994;91:2512–2516. doi: 10.1073/pnas.91.7.2512. PubMed DOI PMC
Dwyer C.A., Katoh T., Tiemeyer M., Matthews R.T. Neurons and Glia Modify Receptor Protein-tyrosine Phosphatase ζ (RPTPζ)/Phosphacan with Cell-specific O-Mannosyl Glycans in the Developing Brain. J. Biol. Chem. 2015;290:10256–10273. doi: 10.1074/jbc.M114.614099. PubMed DOI PMC
Haunsø A., Celio M.R., Margolis R.K., Menoud P.-A. Phosphacan immunoreactivity is associated with perineuronal nets around parvalbumin-expressing neurones. Brain Res. 1999;834:219–222. doi: 10.1016/S0006-8993(99)01596-6. PubMed DOI
Friese A., Kaltschmidt J.A., Ladle D.R., Sigrist M., Jessell T.M., Arber S. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc. Natl. Acad. Sci. USA. 2009;106:13588–13593. doi: 10.1073/pnas.0906809106. PubMed DOI PMC
Mueller A.L., Davis A., Sovich S., Carlson S.S., Robinson F.R. Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications. Neural Plast. 2016;2016 doi: 10.1155/2016/6021428. PubMed DOI PMC
Jäger C., Lendvai D., Seeger G., Brückner G., Matthews R.T., Arendt T., Alpár A., Morawski M. Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience. 2013;238:168–184. doi: 10.1016/j.neuroscience.2013.02.014. PubMed DOI
Shneider N.A., Brown M.N., Smith C.A., Pickel J., Alvarez F.J. Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Dev. 2009;4:42. doi: 10.1186/1749-8104-4-42. PubMed DOI PMC
Eccles J.C., Eccles R.M., Iggo A., Lundberg A. Electrophysiological studies on gamma motoneurones. Acta Physiol. Scand. 1960;50:32–40. doi: 10.1111/j.1748-1716.1960.tb02070.x. PubMed DOI
Misawa H., Hara M., Tanabe S., Niikura M., Moriwaki Y., Okuda T. Osteopontin is an alpha motor neuron marker in the mouse spinal cord. J. Neurosci. Res. 2012;90:732–742. doi: 10.1002/jnr.22813. PubMed DOI
Härtig W., Brauer K., Brückner G. Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport. 1992;3:869–872. doi: 10.1097/00001756-199210000-00012. PubMed DOI
Kalb R.G., Hockfield S. Molecular evidence for early activity-dependent development of hamster motor neurons. J. Neurosci. 1988;8:2350–2360. doi: 10.1523/JNEUROSCI.08-07-02350.1988. PubMed DOI PMC
Matthews R.T., Kelly G.M., Zerillo C.A., Gray G., Tiemeyer M., Hockfield S. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J. Neurosci. 2002;22:7536–7547. PubMed PMC
Bignami A., Perides G., Rahemtulla F. Versican, a hyaluronate-binding proteoglycan of embryonal precartilaginous mesenchyma, is mainly expressed postnatally in rat brain. J. Neurosci. Res. 1993;34:97–106. doi: 10.1002/jnr.490340110. PubMed DOI
Ueno H., Suemitsu S., Okamoto M., Matsumoto Y., Ishihara T. Sensory experience-dependent formation of perineuronal nets and expression of Cat-315 immunoreactive components in the mouse somatosensory cortex. Neuroscience. 2017;355:161–174. doi: 10.1016/j.neuroscience.2017.04.041. PubMed DOI
Dauth S., Grevesse T., Pantazopoulos H., Campbell P.H., Maoz B.M., Berretta S., Parker K.K. Extracellular matrix protein expression is brain region dependent. J. Comp. Neurol. 2016;524:1309–1336. doi: 10.1002/cne.23965. PubMed DOI PMC
Gage G.J., Kipke D.R., Shain W. Whole animal perfusion fixation for rodents. J. Vis. Exp. 2012 doi: 10.3791/3564. PubMed DOI PMC
Phelps P.E., Barber R.P., Houser C.R., Crawford G.D., Salvaterra P.M., Vaughn J.E. Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: An immunocytochemical study. J. Comp. Neurol. 1984;229:347–361. doi: 10.1002/cne.902290306. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Mullen R.J., Buck C.R., Smith A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116:201–211. PubMed
Perineuronal nets affect memory and learning after synapse withdrawal
Therapeutic Strategies for Spinal Cord Injury