Perineuronal nets affect memory and learning after synapse withdrawal
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/R004463/1
Medical Research Council - United Kingdom
MR/V002694/1
Medical Research Council - United Kingdom
PubMed
36379919
PubMed Central
PMC9666654
DOI
10.1038/s41398-022-02226-z
PII: 10.1038/s41398-022-02226-z
Knihovny.cz E-zdroje
- MeSH
- extracelulární matrix - proteiny MeSH
- extracelulární matrix * MeSH
- neurony fyziologie MeSH
- synapse * MeSH
- učení MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH
Perineuronal nets (PNNs) enwrap mature neurons, playing a role in the control of plasticity and synapse dynamics. PNNs have been shown to have effects on memory formation, retention and extinction in a variety of animal models. It has been proposed that the cavities in PNNs, which contain synapses, can act as a memory store and that they remain stable after events that cause synaptic withdrawal such as anoxia or hibernation. We examine this idea by monitoring place memory before and after synaptic withdrawal caused by acute hibernation-like state (HLS). Animals lacking hippocampal PNNs due to enzymatic digestion by chondroitinase ABC or knockout of the PNN component aggrecan were compared with wild type controls. HLS-induced synapse withdrawal caused a memory deficit, but not to the level of untreated naïve animals and not worsened by PNN attenuation. After HLS, only animals lacking PNNs showed memory restoration or relearning. Absence of PNNs affected the restoration of excitatory synapses on PNN-bearing neurons. The results support a role for hippocampal PNNs in learning, but not in long-term memory storage for correction of deficits.
Faculty of Biological Sciences University of Leeds Leeds UK
Imaging Methods Core Facility BIOCEV CAS Vestec Czech Republic
Institute of Experimental Medicine CAS Prague Czech Republic
John van Geest Centre for Brain Repair University of Cambridge Cambridge UK
Zobrazit více v PubMed
Arnst N, Kuznetsova S, Lipachev N, Shaikhutdinov N, Melnikova A, Mavlikeev M, et al. Spatial patterns and cell surface clusters in perineuronal nets. Brain Res. 2016;1648:214–23. PubMed
Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci. 2009;12:897–904. PubMed
Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem. 2006;281:17789–800. PubMed
Irvine SF, Kwok JCF. Perineuronal nets in spinal motoneurones: chondroitin sulphate proteoglycan around alpha motoneurones. Int J Mol Sci. 2018;19:1172. PubMed PMC
Lensjo KK, Christensen AC, Tennoe S, Fyhn M, Hafting T. Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse. eNeuro. 2017;4:ENEURO.0379-16.2017. PubMed PMC
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, et al. Layer-specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices. IBRO Rep. 2019;6:1–17. PubMed PMC
Jager C, Lendvai D, Seeger G, Bruckner G, Matthews RT, Arendt T, et al. Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience. 2013;238:168–84. PubMed
Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019;20:451–65. PubMed
Beurdeley M, Spatazza J, Lee HH, Sugiyama S, Bernard C, Di Nardo AA, et al. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci. 2012;32:9429–37. PubMed PMC
Hou X, Yoshioka N, Tsukano H, Sakai A, Miyata S, Watanabe Y, et al. Chondroitin sulfate is required for onset and offset of critical period plasticity in visual cortex. Sci Rep. 2017;7:12646. PubMed PMC
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal nets: plasticity, protection, and therapeutic potential. Trends Neurosci. 2019;42:458–70. PubMed
Gottschling C, Wegrzyn D, Denecke B, Faissner A. Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep. 2019;9:13939. PubMed PMC
Saroja SR, Sase A, Kircher SG, Wan J, Berger J, Hoger H, et al. Hippocampal proteoglycans brevican and versican are linked to spatial memory of Sprague-Dawley rats in the morris water maze. J Neurochem. 2014;130:797–804. PubMed
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci. 2015;9:427. PubMed PMC
Carulli D, Verhaagen J. An extracellular perspective on CNS maturation: perineuronal nets and the control of plasticity. Int J Mol Sci. 2021;22:2434. PubMed PMC
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry. 2022 10.1038/s41380-022-01634-3. PubMed PMC
Gogolla N, Caroni P, Luthi A, Herry C. Perineuronal nets protect fear memories from erasure. Science. 2009;325:1258–61. PubMed
Yang S, Cacquevel M, Saksida LM, Bussey TJ, Schneider BL, Aebischer P, et al. Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Exp Neurol. 2015;265:48–58. PubMed PMC
Romberg C, Yang S, Melani R, Andrews MR, Horner AE, Spillantini MG, et al. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J Neurosci. 2013;33:7057–65. PubMed PMC
Yang S, Gigout S, Molinaro A, Naito-Matsui Y, Hilton S, Foscarin S, et al. Chondroitin 6-sulphate is required for neuroplasticity and memory in ageing. Mol Psychiatry. 2021;26:5658–68. PubMed PMC
Carulli D, Broersen R, de Winter F, Muir EM, Meskovic M, de Waal M, et al. Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proc Natl Acad Sci USA. 2020;117:6855–65. PubMed PMC
Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, et al. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci. 2015;35:4190–202. PubMed PMC
Blacktop JM, Sorg BA. Perineuronal nets in the lateral hypothalamus area regulate cue-induced reinstatement of cocaine-seeking behavior. Neuropsychopharmacology. 2019;44:850–8. PubMed PMC
Blacktop JM, Todd RP, Sorg BA. Role of perineuronal nets in the anterior dorsal lateral hypothalamic area in the acquisition of cocaine-induced conditioned place preference and self-administration. Neuropharmacology. 2017;118:124–36. PubMed PMC
Slaker ML, Jorgensen ET, Hegarty DM, Liu X, Kong Y, Zhang F, et al. Cocaine exposure modulates perineuronal nets and synaptic excitability of fast-spiking interneurons in the medial prefrontal cortex. eNeuro. 2018;5:ENEURO.0221–18.2018. PubMed PMC
Xue YX, Xue LF, Liu JF, He J, Deng JH, Sun SC, et al. Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci. 2014;34:6647–58. PubMed PMC
Tsien RY. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci USA. 2013;110:12456–61. PubMed PMC
Marchand A, Schwartz C. Perineuronal net expression in the brain of a hibernating mammal. Brain Struct Funct. 2020;225:45–56. PubMed
Hobohm C, Gunther A, Grosche J, Rossner S, Schneider D, Bruckner G. Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. J Neurosci Res. 2005;80:539–48. PubMed
Arendt T, Bullmann T. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a “master switch” regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol. 2013;305:R478–89. PubMed
le Feber J, Erkamp N, van Putten M, Hofmeijer J. Loss and recovery of functional connectivity in cultured cortical networks exposed to hypoxia. J Neurophysiol. 2017;118:394–403. PubMed PMC
Sandvig I, Augestad IL, Haberg AK, Sandvig A. Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. Eur J Neurosci. 2018;47:1414–28. PubMed
Xerri C, Zennou-Azogui Y, Sadlaoud K, Sauvajon D. Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: adaptive versus maladaptive reorganization. Neuroscience. 2014;283:178–201. PubMed
Carlin JL, Jain S, Duroux R, Suresh RR, Xiao C, Auchampach JA, et al. Activation of adenosine A2A or A2B receptors causes hypothermia in mice. Neuropharmacology. 2018;139:268–78. PubMed PMC
Carlin JL, Jain S, Gizewski E, Wan TC, Tosh DK, Xiao C, et al. Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology. 2017;114:101–13. PubMed PMC
Carlin JL, Tosh DK, Xiao C, Pinol RA, Chen Z, Salvemini D, et al. Peripheral adenosine A3 receptor activation causes regulated hypothermia in mice that is dependent on central histamine H1 Receptors. J Pharmacol Exp Ther. 2016;356:474–82. PubMed PMC
Kawamura M, Jr., Ruskin DN, Masino SA. Adenosine A1 receptor-mediated protection of mouse hippocampal synaptic transmission against oxygen and/or glucose deprivation: a comparative study. J Neurophysiol. 2019;122:721–8. PubMed PMC
Bastide A, Peretti D, Knight JR, Grosso S, Spriggs RV, Pichon X, et al. RTN3 is a novel cold-induced protein and mediates neuroprotective effects of RBM3. Curr Biol. 2017;27:638–50. PubMed PMC
Peretti D, Bastide A, Radford H, Verity N, Molloy C, Martin MG, et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature. 2015;518:236–9. PubMed PMC
Broadbent NJ, Squire LR, Clark RE. Reversible hippocampal lesions disrupt water maze performance during both recent and remote memory tests. Learn Mem. 2006;13:187–91. PubMed PMC
Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, Muller RV. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science. 1998;280:2121–6. PubMed
Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3. PubMed
O’Keefe J. A review of the hippocampal place cells. Prog Neurobiol. 1979;13:419–39. PubMed
Tanaka KZ, He H, Tomar A, Niisato K, Huang AJY, McHugh TJ. The hippocampal engram maps experience but not place. Science. 2018;361:392–7. PubMed
Lensjo KK, Lepperod ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J Neurosci. 2017;37:1269–83. PubMed PMC
Lin R, Kwok JC, Crespo D, Fawcett JW, Chondroitinase ABC. has a long lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J Neurochem. 2008;104:400–8. PubMed
Donato F, Chowdhury A, Lahr M, Caroni P. Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron. 2015;85:770–86. PubMed
Morellini F, Sivukhina E, Stoenica L, Oulianova E, Bukalo O, Jakovcevski I, et al. Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus. Cereb Cortex. 2010;20:2712–27. PubMed
Rowlands D, Lensjo KK, Dinh T, Yang S, Andrews MR, Hafting T, et al. Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci. 2018;38:10102–13. PubMed PMC
O’Mara SM, Aggleton JP. Space and memory (far) beyond the hippocampus: many subcortical structures also support cognitive mapping and mnemonic processing. Front Neural Circuits. 2019;13:52. PubMed PMC
Nelson AJ, Hindley EL, Pearce JM, Vann SD, Aggleton JP. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning. Front Behav Neurosci. 2015;9:11. PubMed PMC
Steullet P, Cabungcal JH, Cuenod M, Do KQ. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and effect of perineuronal net loss. Front Cell Neurosci. 2014;8:244. PubMed PMC
Christensen AC, Lensjo KK, lepperod ME, Dragly S-A, Sutterud H, Blackstad JS, et al. Perineuronal nets stabilize the grid cell network. BioRxiv. 2020. PubMed PMC
Bertocchi I, Mele P, Ferrero G, Oberto A, Carulli D, Eva C. NPY-Y1 receptor signaling controls spatial learning and perineuronal net expression. Neuropharmacology. 2020;184:108425. PubMed
Khoo GH, Lin YT, Tsai TC, Hsu KS. Perineuronal nets restrict the induction of long-term depression in the mouse hippocampal CA1 region. Mol Neurobiol. 2019;56:6436–50. PubMed
Bukalo O, Schachner M, Dityatev A. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience. 2001;104:359–69. PubMed
Hayani H, Song I, Dityatev A. Increased excitability and reduced excitatory synaptic input into fast-spiking CA2 interneurons after enzymatic attenuation of extracellular matrix. Front Cell Neurosci. 2018;12:149. PubMed PMC
Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM. Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J Neurosci. 2016;36:6312–20. PubMed PMC
Fawcett JW, Kwok JCF. Proteoglycan sulphation in the function of the mature central nervous system. Front Integr Neurosci. 2022;16:895493. PubMed PMC
Morawski M, Bruckner G, Arendt T, Matthews RT. Aggrecan: beyond cartilage and into the brain. Int J Biochem Cell Biol. 2012;44:690–3. PubMed
Happel MF, Niekisch H, Castiblanco Rivera LL, Ohl FW, Deliano M, Frischknecht R. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proc Natl Acad Sci USA. 2014;111:2800–5. PubMed PMC
Thompson EH, Lensjo KK, Wigestrand MB, Malthe-Sorenssen A, Hafting T, Fyhn M. Removal of perineuronal nets disrupts recall of a remote fear memory. Proc Natl Acad Sci USA. 2018;115:607–12. PubMed PMC
Hylin MJ, Orsi SA, Moore AN, Dash PK. Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn Mem. 2013;20:267–73. PubMed PMC
Shi W, Wei X, Wang X, Du S, Liu W, Song J, et al. Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons. Proc Natl Acad Sci USA. 2019;116:27063–73. PubMed PMC
Vegh MJ, Heldring CM, Kamphuis W, Hijazi S, Timmerman AJ, Li KW, et al. Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2014;2:76. PubMed PMC
Yang S, Hilton S, Alves JN, Saksida LM, Bussey T, Matthews RT, et al. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration. Neurobiol Aging. 2017;59:197–209. PubMed
Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JC, et al. Casting a wide net: role of perineuronal nets in neural plasticity. J Neurosci. 2016;36:11459–68. PubMed PMC
Pantazopoulos H, Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016:9847696. PubMed PMC
Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol. 2019;89:125–35. PubMed
Wen TH, Binder DK, Ethell IM, Razak KA. The perineuronal ‘Safety’ net? Perineuronal net abnormalities in neurological disorders. Front Mol Neurosci. 2018;11:270. PubMed PMC
Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, et al. Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry. 2015;5:e496. PubMed PMC
The extracellular matrix and perineuronal nets in memory
Proteoglycan Sulphation in the Function of the Mature Central Nervous System