Distribution of Population Sizes in Metapopulations of Threatened Organisms-Implications for Conservation of Orchids

. 2025 Jan 25 ; 14 (3) : . [epub] 20250125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39942931

Grantová podpora
L200872201 PPLZ grant given by Czech Academy of Sciences

Species are disappearing worldwide, and it is likely that the rate of their disappearance will increase. The most important factors responsible for this are assumed to be changes in climate and land use. To determine the probability of extinction of a given species, it must be viewed as a metapopulation composed of many populations. In plants, seeds are spread by wind or water (passive dispersers), unlike active dispersers, which can actively look for a suitable site of their species. Thus, while active dispersers can locate a suitable site, passive dispersers often fail to arrive at a suitable site. The following question arises: is it better for the survival of a metapopulation of passive dispersers to concentrate on conserving a few large populations, each of which will produce many propagules, or on many small populations, each of which will produce only few propagules? Here, we address the question of which of these strategies will maximize the likelihood of the survival of such a metapopulation, using orchids as a model. We concluded that small populations should be preferentially preserved. Small populations are more numerous and more likely to occur more widely in the region studied and therefore a larger proportion of the seeds they produce is more likely to land in suitable habitats than that produced by the fewer large populations. For conservation, there is a possibility to extend the results to other taxa. However, this must be carried out with caution and must consider the taxon in question.

Zobrazit více v PubMed

Román-Palacios C., Wiens J.J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA. 2020;117:4211–4217. doi: 10.1073/pnas.1913007117. PubMed DOI PMC

Humphreys A.M., Govaerts R., Ficinski S.Z., Lughadha E.N., Vorontsova M.S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 2019;3:1043–1047. doi: 10.1038/s41559-019-0906-2. PubMed DOI

Jaureguiberry P., Titeux N., Wiemers M., Bowler D.E., Coscieme L., Golden A.S., Guerra C.A., Jacob U., Takahashi Y., Settele J., et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022;8:eabm9982. doi: 10.1126/sciadv.abm9982. PubMed DOI PMC

Balvanera P., Pfaff A., Viña A., García-Frapolli E., Merino L., Minang P.A., Nagabhatla N., Hussain S.A., Sidorovich A.A. Chapter 2.1. Status and Trends–Drivers of Change. In: Brondízio E.S., Settele J., Díaz S., Ngo H.T., editors. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat; Bonn, Germany: 2019. DOI

Newbold T., Hudson L.N., Hill S.L.L., Contu S., Lysenko I., Senior R.A., Börger L., Bennett D.J., Choimes A., Collen B., et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45–50. doi: 10.1038/nature14324. PubMed DOI

Štípková Z., Kindlmann P. Orchid extinction over the last 150 years in the Czech Republic. Diversity. 2021;13:78. doi: 10.3390/d13020078. DOI

Wright J., Pickering C. A continental scale analysis of threats to orchids. Biol. Conserv. 2019;234:7–17.

Giam X., Bradshaw G.J.A., Tan H.T.W., Sodhi N.J. Future habitat loss and the conservation of plant biodiversity. Biol. Conserv. 2010;143:1594–1602. doi: 10.1016/j.biocon.2010.04.019. DOI

Le Roux J.J., Hui C., Castillo M.L., Iriondo J.M., Keet J.H., Khapugin A.A., Médail F., Rejmánek M., Theron G., Hirsch H. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr. Biol. 2019;29:2912–2918. doi: 10.1016/j.cub.2019.07.063. PubMed DOI

Rejmánek M., Krahulec F., Grulich V. Jak rychle a proč vymírají rostliny v antropocénu. Živa. 2021;5:219–223.

Moreira H., Kuipers K.J.J., Posthuma L., Zijp M.C., Hauck M., Huijbregts M.A.J., Schipper A.M. Threats of land use to the global diversity of vascular plants. Divers. Distrib. 2023;29:688–697. doi: 10.1111/ddi.13693. DOI

Sala O.E., Chapin F.S., Armesto J.J., Below E., Blomfield J., Dirzo R., Huber-Sanweld E., Huenneke L.F., Jackson R.B., Kinzig A., et al. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI

Urban M.C. Accelerating extinction risk from climate change. Science. 2015;348:571–573. doi: 10.1126/science.aaa4984. PubMed DOI

Wiens J.J. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol. 2016;14:e2001104. doi: 10.1371/journal.pbio.2001104. PubMed DOI PMC

Warren R., Price J., Graham E., Forstenhaeusler N., Vanderwal J. The projected effect on insects; vertebrates; and plants of limiting global warming to 1.5 °C rather than 2 °C. Science. 2018;360:791–795. doi: 10.1126/science.aar3646. PubMed DOI

Pigot A.L., Merow C., Wilson A., Trisos C.H. Abrupt expansion of climate change risk for species globally. Nat. Ecol. Evol. 2023;7:1060–1071. doi: 10.1038/s41559-023-02070-4. PubMed DOI

Mancini G., Santini L., Gazalis V., Akcakaya H.R., Lucas P.M., Brooks T.M., Foden W., Di Marco M. A standard approach for including climate change responses in IUCN Red List assessments. Conserv. Biol. 2024;38:e14227. doi: 10.1111/cobi.14227. PubMed DOI

Wiens J.J., Zelinka J. How many species will Earth lose to climate change? Glob. Change Biol. 2024;30:e17125. doi: 10.1111/gcb.17125. PubMed DOI

Hanski I.A., Gilpin M.E. Metapopulation Biology: Ecology, Genetics, and Evolution. Academic Press; San Diego, CA, USA: 1997.

Hanski I. Oxford Series in Ecology and Evolution. Oxford OUP; Oxford, UK: 1999. Metapopulation ecology.

Jersáková J., Malinová T. Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol. 2007;176:237–241. doi: 10.1111/j.1469-8137.2007.02223.x. PubMed DOI

Jacquemyn H., Brys R., Vandepitte K., Honnay O., Roldán-Ruiz I., Wiegand T. A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytol. 2007;176:448–459. doi: 10.1111/j.1469-8137.2007.02179.x. PubMed DOI

Švecová M., Štípková Z., Traxmandlová I., Kindlmann P. Difficulties in determining distribution of population sizes within different orchid metapopulations. Eur. J. Environ. Sci. 2023;13:96–109. doi: 10.14712/23361964.2023.11. DOI

Bullock J.M., Clarke R.T. Long distance seed dispersal by wind: Measuring and modelling the tail of the curve. Oecologia. 2000;124:506–521. doi: 10.1007/PL00008876. PubMed DOI

Paradis E., Baillie R.B., Sutherland W.J. Modeling large-scale dispersal distances. Ecol. Model. 2002;151:279–292. doi: 10.1016/S0304-3800(01)00487-2. DOI

Nuttle T., Haefner J.W. Seed Dispersal in Heterogeneous Environments: Bridging the Gap between Mechanistic Dispersal and Forest Dynamics Models. Am. Nat. 2005;165:336–349. doi: 10.1086/428298. PubMed DOI

Jones F.A., Muller-Landau H.C. Masuring long-distance seed dispersal in complex natural environments: An evaluation and integration of classical and genetic methods. J. Ecol. 2008;96:642–652. doi: 10.1111/j.1365-2745.2008.01400.x. DOI

Kotilínek M., Těšitelová T., Košnar J., Fibich P., Hemrová L., Koutecký P., Münzbergová Z., Jersáková J. Seed dispersal and realized gene flow of two forest orchids in a fragmented landscape. Plant Biol. 2020;22:522–532. doi: 10.1111/plb.13099. PubMed DOI

Jersáková J., Kindlmann P. Zásady Péče o Orchidejová Stanoviště. Kopp; České Budějovice, Czech Republic: 2004.

Husband B.C., Barrett S.C.H. A metapopulation perspective in plant population biology. J. Ecol. 1996;84:461–469. doi: 10.2307/2261207. DOI

Gaskett A.C., Gallagher R.V. Orchid diversity: Spatial and climatic patterns from herbarium records. Ecol. Evol. 2018;8:11235–11245. doi: 10.1002/ece3.4598. PubMed DOI PMC

Charitonidou M., Halley J.M. What goes up must come down—Why high fecundity orchids challenge conservation beliefs. Biol. Conserv. 2020;252:108835. doi: 10.1016/j.biocon.2020.108835. DOI

Newman B.J., Ladd P., Batty A., Dixon K. Ecology of orchids in urban bushland reserves—Can orchids be used as indicators of vegetation condition? Lankesteriana. 2007;7:313–315. doi: 10.15517/lank.v7i1-2.19531. DOI

Vogt-Schilb H., Geniez P., Pradel R., Richard F., Schatz B. Inter-annual variability in flowering of orchids: Lessons learned from 8 years of monitoring in a Mediterranean region of France. Eur. J. Environ. Sci. 2013;3:129–137. doi: 10.14712/23361964.2015.16. DOI

Wotavová K., Balounová Z., Kindlmann P. Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol. Conserv. 2004;118:271–279. doi: 10.1016/j.biocon.2003.09.005. DOI

Mokřady z.s. [(accessed on 6 February 2024)]. Available online: https://mokrady.wbs.cz/Mokrady---zakladni-informace.html.

Štípková Z., Tsiftsis S., Kindlmann P. Distribution of orchids with different rooting systems in the Czech Republic. Plants. 2021;10:632. doi: 10.3390/plants10040632. PubMed DOI PMC

Čech L., Ekrt L., Ekrtová E., Jelínková J., Juřička J. Dactylorhiza fuchsii (Druce) Soó–Prstnatec Fuchsův v Kraji Vysočina. Pobočka ČSO na Vysočině 2017. [(accessed on 25 August 2023)]. Available online: www.prirodavysociny.cz.

Palacký University Olomouc. “Climatic Conditions of the Czech Republic”. [(accessed on 6 January 2020)]. Available online: https://geography.upol.cz/soubory/lide/smolova/GCZ/GCZ_Klima.pdf.

Štípková Z., Tsiftsis S., Kindlmann P. Pollination Mechanisms are Driving Orchid Distribution in Space. Sci. Rep. 2020;10:850. doi: 10.1038/s41598-020-57871-5. PubMed DOI PMC

Dressler R.L. Phylogeny and Classification of the Orchid Family. Cambridge University Press; Cambridge, UK: 1993.

Chase M.W., Cameron K.M., Barrett R.L., Freudebstein J.V. DNA data and Orchidaceae systematics: A new phylogenetic classification. In: Dixon K.W., Kell S.P., Barrett R.L., Cribb P.J., editors. Orchid Conservation. Natural History Publications; Kota Kinabalu, Borneo: 2003. pp. 69–89.

Cribb P.J., Kell S.P., Dixon K.W., Barrett R.L. Orchid conservation: A global perspective. In: Dixon K.W., Kell S.P., Barrett R.L., Cribb P.J., editors. Orchid Conservation. Natural History Publications; Kota Kinabalu, Borneo: 2003. pp. 1–2.

Steffelová M., Traxmandlová I., Štípková Z., Kindlmann P. Pollination strategies of deceptive orchids—A review. Eur. J. Environ. Sci. 2023;13:110–116. doi: 10.14712/23361964.2023.12. DOI

Průša D. Orchideje České Republiky. Computer Press; Brno, Czech Republic: 2005.

Grulich V., Chobot K. Red List of Threatened species of the Czech Republic. Vascular Plants. Příroda. 2017;35:1–178.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...