Distribution of Population Sizes in Metapopulations of Threatened Organisms-Implications for Conservation of Orchids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
L200872201
PPLZ grant given by Czech Academy of Sciences
PubMed
39942931
PubMed Central
PMC11821161
DOI
10.3390/plants14030369
PII: plants14030369
Knihovny.cz E-zdroje
- Klíčová slova
- conservation, metapopulation, orchids, passive disperser, population size,
- Publikační typ
- časopisecké články MeSH
Species are disappearing worldwide, and it is likely that the rate of their disappearance will increase. The most important factors responsible for this are assumed to be changes in climate and land use. To determine the probability of extinction of a given species, it must be viewed as a metapopulation composed of many populations. In plants, seeds are spread by wind or water (passive dispersers), unlike active dispersers, which can actively look for a suitable site of their species. Thus, while active dispersers can locate a suitable site, passive dispersers often fail to arrive at a suitable site. The following question arises: is it better for the survival of a metapopulation of passive dispersers to concentrate on conserving a few large populations, each of which will produce many propagules, or on many small populations, each of which will produce only few propagules? Here, we address the question of which of these strategies will maximize the likelihood of the survival of such a metapopulation, using orchids as a model. We concluded that small populations should be preferentially preserved. Small populations are more numerous and more likely to occur more widely in the region studied and therefore a larger proportion of the seeds they produce is more likely to land in suitable habitats than that produced by the fewer large populations. For conservation, there is a possibility to extend the results to other taxa. However, this must be carried out with caution and must consider the taxon in question.
Zobrazit více v PubMed
Román-Palacios C., Wiens J.J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA. 2020;117:4211–4217. doi: 10.1073/pnas.1913007117. PubMed DOI PMC
Humphreys A.M., Govaerts R., Ficinski S.Z., Lughadha E.N., Vorontsova M.S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 2019;3:1043–1047. doi: 10.1038/s41559-019-0906-2. PubMed DOI
Jaureguiberry P., Titeux N., Wiemers M., Bowler D.E., Coscieme L., Golden A.S., Guerra C.A., Jacob U., Takahashi Y., Settele J., et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022;8:eabm9982. doi: 10.1126/sciadv.abm9982. PubMed DOI PMC
Balvanera P., Pfaff A., Viña A., García-Frapolli E., Merino L., Minang P.A., Nagabhatla N., Hussain S.A., Sidorovich A.A. Chapter 2.1. Status and Trends–Drivers of Change. In: Brondízio E.S., Settele J., Díaz S., Ngo H.T., editors. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat; Bonn, Germany: 2019. DOI
Newbold T., Hudson L.N., Hill S.L.L., Contu S., Lysenko I., Senior R.A., Börger L., Bennett D.J., Choimes A., Collen B., et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45–50. doi: 10.1038/nature14324. PubMed DOI
Štípková Z., Kindlmann P. Orchid extinction over the last 150 years in the Czech Republic. Diversity. 2021;13:78. doi: 10.3390/d13020078. DOI
Wright J., Pickering C. A continental scale analysis of threats to orchids. Biol. Conserv. 2019;234:7–17.
Giam X., Bradshaw G.J.A., Tan H.T.W., Sodhi N.J. Future habitat loss and the conservation of plant biodiversity. Biol. Conserv. 2010;143:1594–1602. doi: 10.1016/j.biocon.2010.04.019. DOI
Le Roux J.J., Hui C., Castillo M.L., Iriondo J.M., Keet J.H., Khapugin A.A., Médail F., Rejmánek M., Theron G., Hirsch H. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr. Biol. 2019;29:2912–2918. doi: 10.1016/j.cub.2019.07.063. PubMed DOI
Rejmánek M., Krahulec F., Grulich V. Jak rychle a proč vymírají rostliny v antropocénu. Živa. 2021;5:219–223.
Moreira H., Kuipers K.J.J., Posthuma L., Zijp M.C., Hauck M., Huijbregts M.A.J., Schipper A.M. Threats of land use to the global diversity of vascular plants. Divers. Distrib. 2023;29:688–697. doi: 10.1111/ddi.13693. DOI
Sala O.E., Chapin F.S., Armesto J.J., Below E., Blomfield J., Dirzo R., Huber-Sanweld E., Huenneke L.F., Jackson R.B., Kinzig A., et al. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI
Urban M.C. Accelerating extinction risk from climate change. Science. 2015;348:571–573. doi: 10.1126/science.aaa4984. PubMed DOI
Wiens J.J. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol. 2016;14:e2001104. doi: 10.1371/journal.pbio.2001104. PubMed DOI PMC
Warren R., Price J., Graham E., Forstenhaeusler N., Vanderwal J. The projected effect on insects; vertebrates; and plants of limiting global warming to 1.5 °C rather than 2 °C. Science. 2018;360:791–795. doi: 10.1126/science.aar3646. PubMed DOI
Pigot A.L., Merow C., Wilson A., Trisos C.H. Abrupt expansion of climate change risk for species globally. Nat. Ecol. Evol. 2023;7:1060–1071. doi: 10.1038/s41559-023-02070-4. PubMed DOI
Mancini G., Santini L., Gazalis V., Akcakaya H.R., Lucas P.M., Brooks T.M., Foden W., Di Marco M. A standard approach for including climate change responses in IUCN Red List assessments. Conserv. Biol. 2024;38:e14227. doi: 10.1111/cobi.14227. PubMed DOI
Wiens J.J., Zelinka J. How many species will Earth lose to climate change? Glob. Change Biol. 2024;30:e17125. doi: 10.1111/gcb.17125. PubMed DOI
Hanski I.A., Gilpin M.E. Metapopulation Biology: Ecology, Genetics, and Evolution. Academic Press; San Diego, CA, USA: 1997.
Hanski I. Oxford Series in Ecology and Evolution. Oxford OUP; Oxford, UK: 1999. Metapopulation ecology.
Jersáková J., Malinová T. Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol. 2007;176:237–241. doi: 10.1111/j.1469-8137.2007.02223.x. PubMed DOI
Jacquemyn H., Brys R., Vandepitte K., Honnay O., Roldán-Ruiz I., Wiegand T. A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytol. 2007;176:448–459. doi: 10.1111/j.1469-8137.2007.02179.x. PubMed DOI
Švecová M., Štípková Z., Traxmandlová I., Kindlmann P. Difficulties in determining distribution of population sizes within different orchid metapopulations. Eur. J. Environ. Sci. 2023;13:96–109. doi: 10.14712/23361964.2023.11. DOI
Bullock J.M., Clarke R.T. Long distance seed dispersal by wind: Measuring and modelling the tail of the curve. Oecologia. 2000;124:506–521. doi: 10.1007/PL00008876. PubMed DOI
Paradis E., Baillie R.B., Sutherland W.J. Modeling large-scale dispersal distances. Ecol. Model. 2002;151:279–292. doi: 10.1016/S0304-3800(01)00487-2. DOI
Nuttle T., Haefner J.W. Seed Dispersal in Heterogeneous Environments: Bridging the Gap between Mechanistic Dispersal and Forest Dynamics Models. Am. Nat. 2005;165:336–349. doi: 10.1086/428298. PubMed DOI
Jones F.A., Muller-Landau H.C. Masuring long-distance seed dispersal in complex natural environments: An evaluation and integration of classical and genetic methods. J. Ecol. 2008;96:642–652. doi: 10.1111/j.1365-2745.2008.01400.x. DOI
Kotilínek M., Těšitelová T., Košnar J., Fibich P., Hemrová L., Koutecký P., Münzbergová Z., Jersáková J. Seed dispersal and realized gene flow of two forest orchids in a fragmented landscape. Plant Biol. 2020;22:522–532. doi: 10.1111/plb.13099. PubMed DOI
Jersáková J., Kindlmann P. Zásady Péče o Orchidejová Stanoviště. Kopp; České Budějovice, Czech Republic: 2004.
Husband B.C., Barrett S.C.H. A metapopulation perspective in plant population biology. J. Ecol. 1996;84:461–469. doi: 10.2307/2261207. DOI
Gaskett A.C., Gallagher R.V. Orchid diversity: Spatial and climatic patterns from herbarium records. Ecol. Evol. 2018;8:11235–11245. doi: 10.1002/ece3.4598. PubMed DOI PMC
Charitonidou M., Halley J.M. What goes up must come down—Why high fecundity orchids challenge conservation beliefs. Biol. Conserv. 2020;252:108835. doi: 10.1016/j.biocon.2020.108835. DOI
Newman B.J., Ladd P., Batty A., Dixon K. Ecology of orchids in urban bushland reserves—Can orchids be used as indicators of vegetation condition? Lankesteriana. 2007;7:313–315. doi: 10.15517/lank.v7i1-2.19531. DOI
Vogt-Schilb H., Geniez P., Pradel R., Richard F., Schatz B. Inter-annual variability in flowering of orchids: Lessons learned from 8 years of monitoring in a Mediterranean region of France. Eur. J. Environ. Sci. 2013;3:129–137. doi: 10.14712/23361964.2015.16. DOI
Wotavová K., Balounová Z., Kindlmann P. Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol. Conserv. 2004;118:271–279. doi: 10.1016/j.biocon.2003.09.005. DOI
Mokřady z.s. [(accessed on 6 February 2024)]. Available online: https://mokrady.wbs.cz/Mokrady---zakladni-informace.html.
Štípková Z., Tsiftsis S., Kindlmann P. Distribution of orchids with different rooting systems in the Czech Republic. Plants. 2021;10:632. doi: 10.3390/plants10040632. PubMed DOI PMC
Čech L., Ekrt L., Ekrtová E., Jelínková J., Juřička J. Dactylorhiza fuchsii (Druce) Soó–Prstnatec Fuchsův v Kraji Vysočina. Pobočka ČSO na Vysočině 2017. [(accessed on 25 August 2023)]. Available online: www.prirodavysociny.cz.
Palacký University Olomouc. “Climatic Conditions of the Czech Republic”. [(accessed on 6 January 2020)]. Available online: https://geography.upol.cz/soubory/lide/smolova/GCZ/GCZ_Klima.pdf.
Štípková Z., Tsiftsis S., Kindlmann P. Pollination Mechanisms are Driving Orchid Distribution in Space. Sci. Rep. 2020;10:850. doi: 10.1038/s41598-020-57871-5. PubMed DOI PMC
Dressler R.L. Phylogeny and Classification of the Orchid Family. Cambridge University Press; Cambridge, UK: 1993.
Chase M.W., Cameron K.M., Barrett R.L., Freudebstein J.V. DNA data and Orchidaceae systematics: A new phylogenetic classification. In: Dixon K.W., Kell S.P., Barrett R.L., Cribb P.J., editors. Orchid Conservation. Natural History Publications; Kota Kinabalu, Borneo: 2003. pp. 69–89.
Cribb P.J., Kell S.P., Dixon K.W., Barrett R.L. Orchid conservation: A global perspective. In: Dixon K.W., Kell S.P., Barrett R.L., Cribb P.J., editors. Orchid Conservation. Natural History Publications; Kota Kinabalu, Borneo: 2003. pp. 1–2.
Steffelová M., Traxmandlová I., Štípková Z., Kindlmann P. Pollination strategies of deceptive orchids—A review. Eur. J. Environ. Sci. 2023;13:110–116. doi: 10.14712/23361964.2023.12. DOI
Průša D. Orchideje České Republiky. Computer Press; Brno, Czech Republic: 2005.
Grulich V., Chobot K. Red List of Threatened species of the Czech Republic. Vascular Plants. Příroda. 2017;35:1–178.