Diversity of Mycorrhizal Fungi in Temperate Orchid Species: Comparison of Culture-Dependent and Culture-Independent Methods

. 2024 Jan 23 ; 10 (2) : . [epub] 20240123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38392764

Grantová podpora
18-11378S Czech Science Foundation
22-20650S Czech Science Foundation

Many orchid species are endangered due to anthropogenic pressures such as habitat destruction and overharvesting, meanwhile, all orchids rely on orchid mycorrhizal fungi (OMF) for seed germination and seedling growth. Therefore, a better understanding of this intimate association is crucial for orchid conservation. Isolation and identification of OMF remain challenging as many fungi are unculturable. In our study, we tested the efficiency of both culture-dependent and culture-independent methods to describe OMF diversity in multiple temperate orchids and assessed any phylogenetic patterns in cultivability. The culture-dependent method involved the cultivation and identification of single pelotons (intracellular hyphal coils), while the culture-independent method used next-generation sequencing (NGS) to identify root-associated fungal communities. We found that most orchid species were associated with multiple fungi, and the orchid host had a greater impact than locality on the variability in fungal communities. The culture-independent method revealed greater fungal diversity than the culture-dependent one, but despite the lower detection, the isolated fungal strains were the most abundant OMF in adult roots. Additionally, the abundance of NGS reads of cultured OTUs was correlated with the extent of mycorrhizal root colonization in orchid plants. Finally, this limited-scale study tentatively suggests that the cultivability character of OMF may be randomly distributed along the phylogenetic trees of the rhizoctonian families.

Zobrazit více v PubMed

Chase M.W., Cameron K.M., Freudenstein J.V., Pridgeon A.M., Salazar G., van den Berg C., Schuiteman A. An updated classification of Orchidaceae: Updated Classification of Orchidaceae. Bot. J. Linn. Soc. 2015;177:151–174. doi: 10.1111/boj.12234. DOI

Swarts N.D., Dixon K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009;104:543–556. doi: 10.1093/aob/mcp025. PubMed DOI PMC

Willis K. State of the World’s Plants 2017. Royal Botanics Gardens Kew; Richmond, UK: 2017.

Kull T., Hutchings M.J. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 2006;129:31–39. doi: 10.1016/j.biocon.2005.09.046. DOI

Rasmussen H.N., Dixon K.W., Jersáková J., Těšitelová T. Germination and seedling establishment in orchids: A complex of requirements. Ann. Bot. 2015;116:391–402. doi: 10.1093/aob/mcv087. PubMed DOI PMC

Fay M.F. Orchid conservation: How can we meet the challenges in the twenty-first century? Bot. Stud. 2018;59:16. doi: 10.1186/s40529-018-0232-z. PubMed DOI PMC

Smith S.E., Read D.J. Mycorrhizal Symbiosis. 3rd ed. Academic Press; London, UK: 2008.

McCormick M.K., Jacquemyn H. What constrains the distribution of orchid populations? New Phytol. 2014;202:392–400. doi: 10.1111/nph.12639. DOI

Dearnaley J.D.W., Martos F., Selosse M.-A. 12 Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In: Hock B., editor. Fungal Associations. Springer; Berlin/Heidelberg, Germany: 2012. pp. 207–230.

Rasmussen H.N. Terrestrial Orchids: From Seed to Mycotrophic Plant. 1st ed. Cambridge University Press; Cambridge, UK: 1995.

Rasmussen H.N. Recent developments in the study of orchid mycorrhiza. Plant Soil. 2002;244:149–163. doi: 10.1023/A:1020246715436. DOI

Taylor D.L., Bruns T.D., Leake J.R., Read D.J. Mycorrhizal Specificity and Function in Myco-heterotrophic Plants. In: Van Der Heijden M.G.A., Sanders I.R., editors. Mycorrhizal Ecology. Volume 157. Springer; Berlin/Heidelberg, Germany: 2002. pp. 375–413.

Weiß M., Waller F., Zuccaro A., Selosse M. Sebacinales—One thousand and one interactions with land plants. New Phytol. 2016;211:20–40. doi: 10.1111/nph.13977. PubMed DOI

Kohler A., Kuo A., Nagy L.G., Morin E., Barry K.W., Buscot F., Canbäck B., Choi C., Cichocki N., Clum A., et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI

Jacquemyn H., Duffy K.J., Selosse M.-A. Biogeography of Orchid Mycorrhizas. In: Tedersoo L., editor. Biogeography of Mycorrhizal Symbiosis. Volume 230. Springer International Publishing; New York, NY, USA: 2017. pp. 159–177.

Girlanda M., Segreto R., Cafasso D., Liebel H.T., Rodda M., Ercole E., Cozzolino S., Gebauer G., Perotto S. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am. J. Bot. 2011;98:1148–1163. doi: 10.3732/ajb.1000486. PubMed DOI

Kohout P., Těšitelová T., Roy M., Vohník M., Jersáková J. A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol. 2013;6:50–64. doi: 10.1016/j.funeco.2012.08.005. DOI

Selosse M.-A., Faccio A., Scappaticci G., Bonfante P. Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles. Microb. Ecol. 2004;47:416–426. doi: 10.1007/s00248-003-2034-3. PubMed DOI

Merckx V.S.F.T. Mycoheterotrophy: An Introduction. In: Merckx V., editor. Mycoheterotrophy: The Biology of Plants Living on Fungi. Springer; New York, NY, USA: 2013. pp. 1–17.

Wang D., Lerou J., Nuytinck J., Gomes S.I.F., Jacquemyn H., Merckx V.S.F.T. Root-associated Fungi in Orchidaceae: Diversity, Phylogeny, Ecology, and Outstanding Questions. bioRxiv. 2022. preprint .

Selosse M.-A., Roy M. Green plants that feed on fungi: Facts and questions about mixotrophy. Trends Plant Sci. 2009;14:64–70. doi: 10.1016/j.tplants.2008.11.004. PubMed DOI

Öpik M., Moora M. Missing nodes and links in mycorrhizal networks. New Phytol. 2012;194:304–306. doi: 10.1111/j.1469-8137.2012.04121.x. PubMed DOI

Těšitelová T., Jersáková J., Roy M., Kubátová B., Těšitel J., Urfus T., Trávníček P., Suda J. Ploidy-specific symbiotic interactions: Divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae) New Phytol. 2013;199:1022–1033. doi: 10.1111/nph.12348. PubMed DOI

Vogt-Schilb H., Těšitelová T., Kotilínek M., Sucháček P., Kohout P., Jersáková J. Altered rhizoctonia assemblages in grasslands on ex-arable land support germination of mycorrhizal generalist, not specialist orchids. New Phytol. 2020;227:1200–1212. doi: 10.1111/nph.16604. PubMed DOI

Jacquemyn H., Honnay O., Cammue B.P.A., Brys R., Lievens B. Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus. Orchis. Mol. Ecol. 2010;19:4086–4095. doi: 10.1111/j.1365-294X.2010.04785.x. PubMed DOI

Jacquemyn H., Waud M., Lievens B., Brys R. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Ann. Bot. 2016;118:105–114. doi: 10.1093/aob/mcw015. PubMed DOI PMC

Perez-Lamarque B., Öpik M., Maliet O., Afonso Silva A.C., Selosse M.-A., Martos F., Morlon H. Analysing diversification dynamics using barcoding data: The case of an obligate mycorrhizal symbiont. Mol. Ecol. 2022;31:3496–3512. doi: 10.1111/mec.16478. PubMed DOI PMC

Yun W., Hall I.R. Edible ectomycorrhizal mushrooms: Challenges and achievements. Can. J. Bot. 2004;82:1063–1073. doi: 10.1139/b04-051. DOI

Zettler L.W., Corey L.L. Orchid Mycorrhizal Fungi: Isolation and Identification Techniques. In: Lee Y.-I., Yeung E.C.-T., editors. Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols. Springer; New York, NY, USA: 2018. pp. 27–59.

Nilsson R.H., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019;17:95–109. doi: 10.1038/s41579-018-0116-y. PubMed DOI

Tedersoo L., Bahram M., Zinger L., Nilsson R.H., Kennedy P.G., Yang T., Anslan S., Mikryukov V. Best practices in metabarcoding of fungi: From experimental design to results. Mol. Ecol. 2022;31:2769–2795. doi: 10.1111/mec.16460. PubMed DOI

Alomía Y.A., Otero J.T., Jersáková J., Stevenson P.R. Cultivable fungal community associated with the tropical orchid Dichaea andina. Fungal Ecol. 2022;57:101158. doi: 10.1016/j.funeco.2022.101158. DOI

Schwartz S., Oren R., Ast G. Detection and Removal of Biases in the Analysis of Next-Generation Sequencing Reads. PLoS ONE. 2011;6:e16685. doi: 10.1371/journal.pone.0016685. PubMed DOI PMC

Rammitsu K., Kajita T., Imai R., Ogura-Tsujita Y. Strong primer bias for Tulasnellaceae fungi in metabarcoding: Specific primers improve the characterization of the mycorrhizal communities of epiphytic orchids. Mycoscience. 2021;62:356–363. doi: 10.47371/mycosci.2021.06.005. PubMed DOI PMC

Nguyen N.H., Smith D., Peay K., Kennedy P. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol. 2015;205:1389–1393. doi: 10.1111/nph.12923. PubMed DOI

Porras-Alfaro A., Bayman P. Mycorrhizal Fungi of Vanilla: Diversity, Specificity and Effects on Seed Germination and Plant Growth. Mycologia. 2007;99:510–525. doi: 10.1080/15572536.2007.11832545. PubMed DOI

Mennicken S., Vogt-Schilb H., Těšitelová T., Kotilínek M., Alomía Y.A., Schatz B., Jersáková J. Orchid–mycorrhizal fungi interactions reveal a duality in their network structure in two European regions differing in climate. Mol. Ecol. 2023;32:3308–3321. doi: 10.1111/mec.16918. PubMed DOI

Wang H., Qi M., Cutler A.J. A simple method of preparing plant samples for PCR. Nucl. Acids Res. 1993;21:4153–4154. doi: 10.1093/nar/21.17.4153. PubMed DOI PMC

White T.J., Bruns T., Lee S., Taylor J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Volume 18. Academic Press Inc.; New York, NY, USA: 1990. pp. 315–322.

Taylor D.L., McCormick M.K. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol. 2008;177:1020–1033. doi: 10.1111/j.1469-8137.2007.02320.x. PubMed DOI

Gabriadze I., Kutateladze T., Vishnepolsky B., Karseladze M., Datukishvili N. Application of PCR-based methods for rapid detection of corn ingredients in processed foods. Int. J. Food Sci. Nutr. 2014;3:199–202. doi: 10.11648/j.ijnfs.20140303.21. DOI

Li T., Yang W., Wu S., Selosse M.-A., Gao J. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. Front. Plant Sci. 2021;12:646325. doi: 10.3389/fpls.2021.646325. PubMed DOI PMC

Katoh K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999;41:95–98.

Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; New York, NY, USA: IEEE; 2010. pp. 1–8.

Rambaut A. FigTree. Institute of Evolutionary Biology, University of Edinburgh; Edinburgh, UK: 2010. v1.3.1.

Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. R package version 2.5-7. 2020. [(accessed on 9 September 2023)]. Available online: https://CRAN.R-project.org/package=vegan.

Jacquemyn H., Brys R., Waud M., Busschaert P., Lievens B. Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol. 2015;206:1127–1134. doi: 10.1111/nph.13281. PubMed DOI

Těšitelová T., Kotilínek M., Jersáková J., Joly F., Košnar J., Tatarenko I., Selosse M. Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Mol. Ecol. 2015;24:1122–1134. doi: 10.1111/mec.13088. PubMed DOI

Djordjević V., Tsiftsis S., Lakušić D., Jovanović S., Stevanović V. Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Syst. Biodivers. 2016;14:355–370. doi: 10.1080/14772000.2016.1151468. DOI

Bailarote B.C., Lievens B., Jacquemyn H. Does mycorrhizal specificity affect orchid decline and rarity? Am. J. Bot. 2012;99:1655–1665. doi: 10.3732/ajb.1200117. PubMed DOI

Kotilínek M., Těšitelová T., Jersáková J. Biological Flora of the British Isles: Neottia ovata. J. Ecol. 2015;103:1354–1366. doi: 10.1111/1365-2745.12444. DOI

Jacquemyn H., Merckx V., Brys R., Tyteca D., Cammue B.P.A., Honnay O., Lievens B. Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae) New Phytol. 2011;192:518–528. doi: 10.1111/j.1469-8137.2011.03796.x. PubMed DOI

Abdullah W.R. Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys apifera. The University of Liverpool; Liverpool, UK: 2018.

Selosse M.A., Martos F., Perry B., Maj P., Roy M., Pailler T. Saprotrophic fungal symbionts in tropical achlorophyllous orchids: Finding treasures among the ‘molecular scraps’? Plant Signal. Behav. 2010;5:349–353. doi: 10.4161/psb.5.4.10791. PubMed DOI PMC

Yagame T., Funabiki E., Nagasawa E., Fukiharu T., Iwase K. Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae) Am. J. Bot. 2013;100:1823–1830. doi: 10.3732/ajb.1300099. PubMed DOI

Zhang L., Chen J., Lv Y., Gao C., Guo S. Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol. Progress. 2012;11:395–401. doi: 10.1007/s11557-011-0754-1. DOI

Looney B.P., Meidl P., Piatek M.J., Miettinen O., Martin F.M., Matheny P.B., Labbé J.L. Russulaceae: A new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytol. 2018;218:54–65. doi: 10.1111/nph.15001. PubMed DOI

Girlanda M., Selosse M.A., Cafasso D., Brilli F., Delfine S., Fabbian R., Ghignone S., Pinelli P., Segreto R., Loreto F., et al. Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol. Ecol. 2006;15:491–504. doi: 10.1111/j.1365-294X.2005.02770.x. PubMed DOI

Xing X., Gao Y., Zhao Z., Waud M., Duffy K.J., Selosse M., Jakalski M., Liu N., Jacquemyn H., Guo S. Similarity in mycorrhizal communities associating with two widespread terrestrial orchids decays with distance. J. Biogeogr. 2020;47:421–433. doi: 10.1111/jbi.13728. DOI

Těšitelová T., Těšitel J., Jersáková J., Ríhová G., Selosse M. Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am. J. Bot. 2012;99:1020–1032. doi: 10.3732/ajb.1100503. PubMed DOI

Taylor D.L., Bruns T.D. Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc. Natl. Acad. Sci. USA. 1997;94:4510–4515. doi: 10.1073/pnas.94.9.4510. PubMed DOI PMC

Jacquemyn H., Brys R., Merckx V.S.F.T., Waud M., Lievens B., Wiegand T. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol. 2014;202:616–627. doi: 10.1111/nph.12640. PubMed DOI

Oja J., Kohout P., Tedersoo L., Kull T., Kõljalg U. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol. 2015;205:1608–1618. doi: 10.1111/nph.13223. PubMed DOI

Duffy K.J., Waud M., Schatz B., Petanidou T., Jacquemyn H. Latitudinal variation in mycorrhizal diversity associated with a European orchid. J. Biogeogr. 2019;46:968–980. doi: 10.1111/jbi.13548. DOI

Cevallos S., Herrera P., Sánchez-Rodríguez A., Declerck S., Suárez J.P. Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. Fungal Ecol. 2018;34:67–75. doi: 10.1016/j.funeco.2018.05.002. DOI

Kretzchmar H., Eccarius W., Dietrich H. The Orchid Genera Anacamptis, Orchis, Neotinea. EchinoMedia-Verlag; Albersdorf, Germany: 2007.

Cruz D., Suárez J.P., Kottke I., Piepenbring M., Oberwinkler F. Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8S sequence data of basidiomata from a tropical Andean forest. Mycol. Progress. 2011;10:229–238. doi: 10.1007/s11557-010-0692-3. DOI

Calevo J., Voyron S., Ercole E., Girlanda M. Is the Distribution of Two Rare Orchis Sister Species Limited by Their Main Mycobiont? Diversity. 2020;12:262. doi: 10.3390/d12070262. DOI

Oberwinkler F., Cruz D., Suárez J.P. Biogeography and Ecology of Tulasnellaceae. In: Tedersoo L., editor. Biogeography of Mycorrhizal Symbiosis. Volume 230. Springer International Publishing; New York, NY, USA: 2017. pp. 237–271.

Nurfadilah S., Swarts N.D., Dixon K.W., Lambers H., Merritt D.J. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann. Bot. 2013;111:1233–1241. doi: 10.1093/aob/mct064. PubMed DOI PMC

Jacquemyn H., Brys R., Cammue BP A., Honnay O., Lievens B. Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Ann. Bot. 2011;107:347–356. doi: 10.1093/aob/mcq248. PubMed DOI PMC

Lievens B., van Kerckhove S., Justé A., Cammue B.P., Honnay O., Jacquemyn H. From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. J. Microbiol. Methods. 2010;80:76–85. doi: 10.1016/j.mimet.2009.11.004. PubMed DOI

Shefferson R.P., Kull T., Tali K. Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am. J. Bot. 2008;95:156–164. doi: 10.3732/ajb.95.2.156. PubMed DOI

Novotná A., Mennicken S., de Paula C.C.P., Vogt-Schilb H., Kotilínek M., Těšitelová T., Šmilauer P., Jersáková J. Variability in Nutrient Use by Orchid Mycorrhizal Fungi in Two Medium Types. J. Fungi. 2023;9:88. doi: 10.3390/jof9010088. PubMed DOI PMC

Meng Y.-Y., Zhang W.-L., Selosse M.-A., Gao J.-Y. Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza. 2019;29:541–547. doi: 10.1007/s00572-019-00907-0. PubMed DOI

Cevallos S., Declerck S., Suárez J.P. In situ Orchid Seedling-Trap Experiment Shows Few Keystone and Many Randomly Associated Mycorrhizal Fungal Species during Early Plant Colonization. Front. Plant Sci. 2018;9:1664. doi: 10.3389/fpls.2018.01664. PubMed DOI PMC

Avis P.G., Branco S., Tang Y., Mueller G.M. Pooled samples bias fungal community descriptions. Mol. Ecol. Resour. 2010;10:135–141. doi: 10.1111/j.1755-0998.2009.02743.x. PubMed DOI

Tedersoo L., May T.W., Smith M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–263. doi: 10.1007/s00572-009-0274-x. PubMed DOI

Wang D., Trimbos K.B., Gomes S.I.F., Jacquemyn H., Merckx V.S.F.T. Metabarcoding read abundances of orchid mycorrhizal fungi are correlated to copy numbers estimated using ddPCR. New Phytol. 2023. Online Version of Record . PubMed

Jansa J., Mozafar A., Frossard E. Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil. 2005;276:163–176. doi: 10.1007/s11104-005-4274-0. DOI

Bukovská P., Rozmoš M., Kotianová M., Gančarčíková K., Dudáš M., Hršelová H., Jansa J. Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front. Microbiol. 2021;12:574060. doi: 10.3389/fmicb.2021.574060. PubMed DOI PMC

Ventre Lespiaucq A., Jacquemyn H., Rasmussen H.N., Méndez M. Temporal turnover in mycorrhizal interactions: A proof of concept with orchids. New Phytol. 2021;230:1690–1699. doi: 10.1111/nph.17291. PubMed DOI

Lin G., McCormack M.L., Guo D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 2015;103:1224–1232. doi: 10.1111/1365-2745.12429. DOI

Liu N., Jacquemyn H., Liu Q., Shao S.C., Ding G., Xing X. Effects of a dark septate fungal endophyte on the growth and physiological response of seedlings to drought in an epiphytic orchid. Front. Microbiol. 2022;13:961172. doi: 10.3389/fmicb.2022.961172. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...