Whole genome sequences of nine Taylorella equigenitalis strains isolated in the Czech Republic between 1982-2021: Molecular dating suggests a common ancestor at the time of Roman Empire
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39752466
PubMed Central
PMC11698419
DOI
10.1371/journal.pone.0315946
PII: PONE-D-24-32562
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- fylogeneze MeSH
- genom bakteriální * genetika MeSH
- koně mikrobiologie MeSH
- molekulární evoluce MeSH
- nemoci koní * mikrobiologie MeSH
- sekvenování celého genomu * MeSH
- Taylorella equigenitalis * genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antibakteriální látky MeSH
Taylorella equigenitalis is the causative agent of sexually transmitted contagious equine metritis. Infections manifest as cervicitis, vaginitis and endometritis and cause temporary infertility and miscarriages of mares. While previous studies have analyzed this organism for various parameters, the evolutionary dynamics of this pathogen, including the emergence of antibiotic resistance, remains unresolved. The aim of this study was to isolate contemporary strains, determine their genome sequences, evaluate their antibiotic resistance and compare them with other strains. We determined nine complete whole genome sequences of T. equigenitalis strains, mainly from samples collected from Kladruber horses in the Czech Republic. While T. equigenitalis strains from Kladruby isolated between 1982 and 2018 were inhibited by streptomycin, contemporary strains were found to be resistant to streptomycin, suggesting the recent emergence of this mutation. In addition, we used the collection dates of Kladruber horse strains to estimate the genome substitution rate, which resulted in a scaled mean evolutionary rate of 6.9×10-7 substitutions per site per year. Analysis with other available T. equigenitalis genome sequences (n = 18) revealed similarity of the Czech T. equigenitalis genomes with the Austrian T. equigenitalis genome, and molecular dating suggested a common ancestor of all analyzed T. equigenitalis strains from 1.5-2.6 thousand years ago, dating to the first centuries A.D. Our study revealed a recently emerged streptomycin resistance in T. equigenitalis strains from Kladruber horses, emphasizing the need for antibiotic surveillance and alternative treatments. Additionally, our findings provided insights into the pathogen's evolution rate, which is important for understanding its evolution and preparing preventive strategies.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Public Health Faculty of Medicine Masaryk University Brno Czech Republic
National Stud at Kladruby nad Labem Kladruby nad Labem Czech Republic
Zobrazit více v PubMed
Biberstein EL. Haemophilus and Taylorella. Diagnostic Procedure in Veterinary Bacteriology and Mycology. Academic Press; 1990. doi: 10.1016/b978-0-12-161775-2.50017–7 DOI
Metcalf ES. The role of international transport of equine semen on disease transmission. Anim Reprod Sci. 2001;68: 229–237. doi: 10.1016/s0378-4320(01)00159-2 PubMed DOI
Timoney PJ. Horse species symposium: contagious equine metritis: an insidious threat to the horse breeding industry in the United States. J Anim Sci. 2011;89: 1552–1560. doi: 10.2527/jas.2010-3368 PubMed DOI
Hicks J, Stuber T, Lantz K, Erdman M, Robbe-Austerman S, Huang X. Genomic diversity of Taylorella equigenitalis introduced into the United States from 1978 to 2012. PLoS One. 2018;13. doi: 10.1371/journal.pone.0194253 PubMed DOI PMC
Thoresen SI, Jenkins A, Ask E. Genetic homogeneity of Taylorella equigenitalis from Norwegian trotting horses revealed by chromosomal DNA fingerprinting. J Clin Microbiol. 1995;33: 233. doi: 10.1128/jcm.33.1.233–234.1995 PubMed DOI PMC
Miyazawa T, Matsuda M, Isayama Y, Samata T, Ishida Y, Ogawa S, et al.. Genotyping of isolates of Taylorella equigenitalis from thoroughbred brood mares in Japan. Vet Res Commun. 1995;19: 265–271. doi: 10.1007/bf01839309 PubMed DOI
Duquesne F, Hébert L, Breuil MF, Matsuda M, Laugier C, Petry S. Development of a single multi-locus sequence typing scheme for Taylorella equigenitalis and Taylorella asinigenitalis. Vet Microbiol. 2013;167: 609–618. doi: 10.1016/j.vetmic.2013.09.016 PubMed DOI
Duquesne F, Merlin A, Pérez-Cobo I, Sedlák K, Melzer F, Overesch G, et al.. Overview of spatio-temporal distribution inferred by multi-locus sequence typing of Taylorella equigenitalis isolated worldwide from 1977 to 2018 in equidae. Vet Microbiol. 2020;242. doi: 10.1016/j.vetmic.2020.108597 PubMed DOI
Hébert L, Moumen B, Duquesne F, Breuil MF, Laugier C, Batto JM, et al.. Genome sequence of Taylorella equigenitalis MCE9, the causative agent of contagious equine metritis. J Bacteriol. 2011;193: 1785. doi: 10.1128/jb.01547-10 PubMed DOI PMC
Hébert L, Moumen B, Pons N, Duquesne F, Breuil MF, Goux D, et al.. Genomic characterization of the Taylorella genus. PLoS One. 2012;7. doi: 10.1371/journal.pone.0029953 PubMed DOI PMC
Hauser H, Richter DC, van Tonder A, Clark L, Preston A. Comparative genomic analyses of the Taylorellae. Vet Microbiol. 2012;159: 195–203. doi: 10.1016/j.vetmic.2012.03.041 PubMed DOI
Hébert L, Touzain F, de Boisséson C, Breuil MF, Duquesne F, Laugier C, et al.. Draft Genome Sequence of Taylorella equigenitalis Strain MCE529, Isolated from a Belgian Warmblood Horse. Genome Announc. 2014;2. doi: 10.1128/genomea.01214-14 PubMed DOI PMC
May CE, Schulman ML, Howell PG, Lourens CW, Gouws J, Joone C, et al.. Draft Genome Sequence of Taylorella equigenitalis Strain ERC_G2224 Isolated from the Semen of a Lipizzaner Stallion in South Africa. Genome Announc. 2015;3. doi: 10.1128/genomea.01205-15 PubMed DOI PMC
Melzer F, Raßbach A, Köenig-Mozes A, Elschner MC, Tomaso H, Busch A. Draft Genome Sequence of Taylorella equigenitalis Strain 210217RC10635, Isolated from a Pony Stallion in Germany. Microbiol Resour Announc. 2018;7. doi: 10.1128/mra.01112-18 PubMed DOI PMC
Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019;20. doi: 10.1186/s13059-019-1727-y PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34: i884–i890. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC
Andrew S. FastQC: Babraham Bioinformatics. 2010. Available on: https://www.scienceopen.com
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32: 3047–3048. doi: 10.1093/bioinformatics/btw354 PubMed DOI PMC
Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research. 2018;7: 1338. doi: 10.12688/f1000research.15931.2 PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13. doi: 10.1371/journal.pcbi.1005595 PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al.. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10. doi: 10.1093/gigascience/giab008 PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20: 1297–1303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al.. Integrative genomics viewer. Nat Biotechnol. 2011;29: 24–26. doi: 10.1038/nbt.1754 PubMed DOI PMC
Yoshimura D, Kajitani R, Gotoh Y, Katahira K, Okuno M, Ogura Y, et al.. Evaluation of SNP calling methods for closely related bacterial isolates and a novel high-accuracy pipeline: BactSNP. Microb genomics. 2019;5. doi: 10.1099/mgen.0.000261 PubMed DOI PMC
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al.. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43: e15. doi: 10.1093/nar/gku1196 PubMed DOI PMC
Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22: 160–174. doi: 10.1007/BF02101694 PubMed DOI
Skilling J. Nested sampling for general Bayesian computation. 2006;1: 833–859. https://doi.org/101214/06-ba127.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al.. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10. doi: 10.1371/journal.pcbi.1003537 PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 2018;67: 901–904. doi: 10.1093/sysbio/syy032 PubMed DOI PMC
Rambaut A. FigTree v1.4.2. 2014. Available at: http://tree.bio.ed.ac.uk/software/figtree/
Mazurová J. Nakažlivý zánět dělohy koní. University of Veterinary Sciences, Brno. 1987, Accession number: 550950, Available at: katalog.vfu.cz.
Bzdil J, Oláhová S, Valihrachová M, Konečný J. Případ asymptomatické formy infekční metritidy koní u klisny v okrese Hodonín. Veterinarstvi. 2018;68: 336–339.
Patrasová E. Mikrobiologická diagnostika infekční metritidy klisen a charakterizace izolátů Taylorella equigenitalis. University of Veterinary Sciences, Brno. 2020. Available at: https://katalog.vfu.cz.
Golparian D, Harris SR, Sánchez-Busó L, Hoffmann S, Shafer WM, Bentley SD, et al.. Genomic evolution of Neisseria gonorrhoeae since the preantibiotic era (1928–2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC Genomics. 2020;21. doi: 10.1186/s12864-020-6511-6 PubMed DOI PMC
Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D, Rychlík I, et al.. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis. 2017;11. doi: 10.1371/journal.pntd.0005894 PubMed DOI PMC
Grillová L, Giacani L, Mikalová L, Strouhal M, Strnadel R, Marra C, et al.. Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using Anti-Treponemal Antibodies Enrichment: First complete whole genome sequence obtained directly from human clinical material. PLoS One. 2018;13. doi: 10.1371/journal.pone.0202619 PubMed DOI PMC
Šmajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 2012;12: 191–202. doi: 10.1016/j.meegid.2011.12.001 PubMed DOI PMC
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018;61: 92–107. doi: 10.1016/j.meegid.2018.03.015 PubMed DOI
Morelli G, Didelot X, Kusecek B, Schwarz S, Bahlawane C, Falush D, et al.. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet. 2010;6: 1–12. doi: 10.1371/journal.pgen.1001036 PubMed DOI PMC
Pelchovich G, Schreiber R, Zhuravlev A, Gophna U. The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics. Int J Med Microbiol. 2013;303: 558–562. doi: 10.1016/j.ijmm.2013.07.006 PubMed DOI