Variability in Nutrient Use by Orchid Mycorrhizal Fungi in Two Medium Types

. 2023 Jan 06 ; 9 (1) : . [epub] 20230106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36675907

Grantová podpora
18-11378S Czech Science Foundation

Orchid mycorrhizal fungi (OMF) from the rhizoctonia aggregate are generally considered to be soil saprotrophs, but their ability to utilize various nutrient sources has been studied in a limited number of isolates cultivated predominantly in liquid media, although rhizoctonia typically grow on the surface of solid substrates. Nine isolates representing the key OMF families (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae), sampled in Southern France and the Czech Republic, were tested for their ability to utilize carbon (C), nitrogen (N) and phosphorus (P) sources in vitro in both liquid and solid media. The isolates showed significant inter- and intra-familiar variability in nutrient utilization, most notably in N sources. Isolates produced generally larger amounts of dry biomass on solid medium than in liquid one, but some isolates showed no or limited biomass production on solid medium with particular nutrient sources. The largest amount of biomass was produced by isolates from the family Ceratobasidiaceae on most sources in both medium types. The biomass production of Tulasnellaceae isolates was affected by their phylogenetic relatedness on all sources and medium types. The ability of isolates to utilize particular nutrients in a liquid medium but not a solid one should be considered when optimizing solid media for symbiotic orchid seed germination and in understanding of OMF functional traits under in situ conditions.

Zobrazit více v PubMed

Smith S.E., Read D.J. Mycorrhizal Symbiosis. 3rd ed. Academic Press; London, UK: 2008.

Kohler A., Kuo A., Nagy L.G., Morin E., Barry K.W., Buscot F., Canbäck B., Choi C., Cichocki N., Clum A., et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI

Rasmussen H.N. Terrestrial Orchids. From Seed to Mycotrophic Plant. 1st ed. Cambridge University Press; Cambridge, UK: 1995.

Weiss M., Waller F., Zuccaro A., Selosse M.A. Sebacinales—One thousand and one interactions with land plants. New Phytol. 2016;211:20–40. doi: 10.1111/nph.13977. PubMed DOI

Selosse M.A., Martos F. Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Trends Plant Sci. 2014;19:683–685. doi: 10.1016/j.tplants.2014.09.005. PubMed DOI

Selosse M.A., Dubois M.P., Alvarez N. Do Sebacinales commonly associate with plant roots as endophytes? Mycol. Res. 2009;113:1062–1069. doi: 10.1016/j.mycres.2009.07.004. PubMed DOI

Veldre V., Abarenkov K., Bahram M., Martos F., Selosse M.A., Tamm H., Köljalg U., Tedersoo L. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol. 2013;6:256–268. doi: 10.1016/j.funeco.2013.03.004. DOI

Bidartondo M.I., Bruns T.D., Weiß M., Sergio S., Read D.J. Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc. R. Soc. Lond. B. 2003;270:835–842. doi: 10.1098/rspb.2002.2299. PubMed DOI PMC

Ceresini P.C., Costa-Souza E., Zala M., Furtado E.L., Souza N.L. Evidence that the Ceratobasidium-like white-thread blight and black rot fungal pathogens from persimmon and tea crops in the Brazilian Atlantic Forest agroecosystem are two distinct phylospecies. Genet. Mol. Biol. 2012;35:480–497. doi: 10.1590/S1415-47572012005000032. PubMed DOI PMC

Mosquera-Espinosa A.T., Bayman P., Prado G.A., Gómez-Carabalí A., Otero J.T. The double life of Ceratobasidium: Orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia. 2012;105:141–150. doi: 10.3852/12-079. PubMed DOI

Adamo M., Chialva M., Calevo J., De Rose S., Girlanda M., Perotto S., Balestrini R. The dark site of orchid symbiosis: Can Tulasnella calospora decompose host tissues? Int. J. Mol. Sci. 2020;21:3139. doi: 10.3390/ijms21093139. PubMed DOI PMC

Suetsugu K., Matsubayashi J., Tayasu I. Some mycoheterotrophic orchids depends on carbon from dead wood: Novel evidence from a radiocarbon approach. New Phytol. 2020;227:1519–1529. doi: 10.1111/nph.16409. PubMed DOI

van der Kinderen G. A method for the study of field germinated seeds of terrestrial orchids. Lindleyana. 1995;10:68–73.

Boddy L., Frankland J.C., van West P. Ecology of Saptrotrophic Basidiomycetes. 1st ed. Elsevier Science; Amsterdam, The Netherlands: 2008.

Baldrian P. Enzymes of saprotrophic basidiomycetes. In: Boody L., Frankland J.C., van West P., editors. Ecology of Satprotrophic Basidiomycetes. 1st ed. Elsevier Science; Amsterdam, The Netherlands: 2008. Chapter 2; pp. 19–42.

Berg B., Laskowski R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover. Elsevier Science Publishing Co Inc.; San Diego, CA, USA: 2006.

Kallenbach C., Frey S., Grandy A. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016;7:13630. doi: 10.1038/ncomms13630. PubMed DOI PMC

Stevenson F.J. Organic forms of soil nitrogen. In: Stevenson F.J., editor. Nitrogen in Agricultural Soils. Volume 22. American Society of Agronomy; Madison, WI, USA: 1982. pp. 67–122.

Richardson A.E., Simpson R. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011;156:989–996. doi: 10.1104/pp.111.175448. PubMed DOI PMC

Muindi E.M. Understanding soil phosphorus. Int. J. Plant Soil Sci. 2019;31:1–18. doi: 10.9734/ijpss/2019/v31i230208. DOI

Midgley D.J., Jordan L.A., Saleeba J.A., McGee P.A. Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza. 2006;16:175–182. doi: 10.1007/s00572-005-0029-2. PubMed DOI

Nurfadilah S., Swarts N.D., Dixon K.W., Lambers H., Merritt D.J. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann. Bot. 2013;111:1233–1241. doi: 10.1093/aob/mct064. PubMed DOI PMC

Mehra S., Morrison P.D., Coates F., Lawrie A.C. Differences in carbon source utilisation by orchid mycorrhizal fungi from common and endangered species of Caladenia (Orchidaceae) Mycorrhiza. 2017;27:95–108. doi: 10.1007/s00572-016-0732-1. PubMed DOI

Oktalira F.T. Ph.D. Thesis. The Australian National University; Canberra, Australia: 2021. Diversity of Serendipitaceae Mycorrhizal Associations of Australian Terrestrial Orchids.

Fochi V., Chitarra V., Kohler A., Voyron S., Singan V.R., Lindquist E.A., Barry K.W., Girlanda M., Grigoriev I.V., Martin F., et al. Fungal and plant gene expression in the Tulasnella calospora–Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 2017;213:365–379. doi: 10.1111/nph.14279. PubMed DOI

Freestone M., Linde C., Swarts N., Reiter N. Ceratobasidium orchid mycorrhizal fungi reveal intraspecific variation and interaction with different nutrient media in symbiotic germination of Prasophyllum (Orchidaceae) Symbiosis. 2022;87:255–268. doi: 10.1007/s13199-022-00874-9. DOI

Cruz D., Suárez J.P., Kottke I., Piepenbring M., Oberwinkler F. Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8S sequence data of basidiomata from a tropical Andean forest. Mycol. Prog. 2011;10:229–238. doi: 10.1007/s11557-010-0692-3. DOI

Oberwinkler F., Riess K., Bauer R., Kirschner R., Garnica S. Taxonomic re-evaluation of the Ceratobasidium-Rhizoctonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycol. Prog. 2013;12:763–776. doi: 10.1007/s11557-013-0936-0. DOI

González D., Rodriguez-Carres M., Boekhout T., Stalpers J., Kuramae E.E., Nakatani A.K., Vilgalys R., Cubeta M.A. Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol. 2016;120:603–619. doi: 10.1016/j.funbio.2016.01.012. PubMed DOI PMC

Gibbs P.A., Seviour R.J., Schmid F. Growth of filamentous fungi in submerged culture: Problems and possible solutions. Crit. Rev. Biotechnol. 2000;20:17–48. doi: 10.1080/07388550091144177. PubMed DOI

Pradeep F.S., Begam M.S., Palaniswamy M., Pradeep B.V. Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from Paddy Field Soil. World Appl. Sci. J. 2013;22:70–77.

Viniegra-González G., Favela-Torres E., Aguilar C.N., Rómero-Gomez S.J., Díaz-Godínez G., Augur C. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 2003;13:157–167. doi: 10.1016/S1369-703X(02)00128-6. DOI

Marx D.H., Bryan W.C. Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. For. Sci. 1975;21:245–254. doi: 10.1126/science.188.4185.245. DOI

White T.J., Bruns T., Lee S., Taylor J.W. Amplification and direct sequencing of fungal genes for phylogenetics. In: Innis M., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press Inc.; New York, NY, USA: 1990. pp. 315–322.

Taylor D.L., McCormick M.K. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol. 2008;177:1020–1033. doi: 10.1111/j.1469-8137.2007.02320.x. PubMed DOI

Těšitelová T., Jersáková J., Roy M., Kubátová B., Těšitel J., Urfus T., Trávníček P., Suda J. Ploidy-specific symbiotic interactions: Divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae) New Phytol. 2013;199:1022–1033. doi: 10.1111/nph.12348. PubMed DOI

Milne I., Wright F., Rowe G., Marshall D.F., Husmeier D., McGuire G. TOPALi: Software for automatic identification of recombinant sequences within DNA multiple alignments. Bioinformatics. 2004;20:1806–1807. doi: 10.1093/bioinformatics/bth155. PubMed DOI

Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.

Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. PubMed DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 1 February 2022)]. Available online: https://www.R-project.org/

O’Hara R.B., Simpson G.L., Solymos P.M., Stevens H.H., Szoecs E., Wagne H. Package “Vegan”: Community Ecology Package. R Package Version 2.5-1. 2018. [(accessed on 1 February 2022)]. Available online: https://CRAN.R-project.org/package=vegan.

Grothendieck G. LME4: Linear Mixed-Effects Models using ‘Eigen’ and S4. R Package Version 1.1-10. 2015. [(accessed on 1 February 2022)]. Available online: http://lme4.r-forge.r-project.org.

Mehra S. PhD Thesis. RMIT University; Victoria, Australia: 2014. Dec, Nutritional and Genetic Diversity in Orchid Mycorrhizal Fungi from Caladenia Species.

Gessner M.O. Ergosterol as a measure of fungal biomass. In: Graça M.A., Bärlocher F., Gessner M.O., editors. Methods to Study Litter Decomposition. 2nd ed. Springer; Dordrecht, The Netherlands: 2005. pp. 189–195.

Wright M., Cross R., Cousens R.D., May T.W., McLean C.B. The functional significance for the orchid Caladenia tentaculata of genetic and geographic variation in the mycorrhizal fungus Sebacina vermifera s. l. complex. Muelleria. 2011;29:130–140. doi: 10.5962/p.292519. DOI

Dearnaley J.D.W., Perotto S., Selosse M.A. Structure and development of orchid mycorrhizas. In: Martin F., editor. Molecular Mycorrhizal Symbiosis. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2017. pp. 63–86.

Freestone M.W., Swarts N.D., Reiter N., Tomlinson S., Sussmilch F.C., Wright M.M., Holmes G.D., Phillips R.D., Linde C.C. Continental-scale distribution and diversity of Ceratobasidium orchid mycorrhizal fungi in Australia. Ann. Bot. 2021;128:329–343. doi: 10.1093/aob/mcab067. PubMed DOI PMC

Di Lonardo D.P., Van der Wal A., Harkes P., de Boer W. Effect of nitrogen on fungal growth efficiency. Plant Biosyst. 2020;154:433–437. doi: 10.1080/11263504.2020.1779849. DOI

Meti R.S., Ambarish S., Khajure P.V. Enzymes of ammonia assimilation in fungi: An overview. Recent Res. Sci. Technol. 2011;2:28–38.

Schweiger J.M.I., Bidartondo M.I., Gebauer G. Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Fungal Ecol. 2017;32:870–881. doi: 10.1111/1365-2435.13042. DOI

Cameron D.D., Leake J.R., Read D.J. Mutualistic mycorrhiza in orchids: Evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol. 2006;171:405–416. doi: 10.1111/j.1469-8137.2006.01767.x. PubMed DOI

Ray P., Abraham P.E., Guo Y., Giannone R.J., Engle N.L., Yang Z.K., Jacobson D., Hettich R.L., Tschaplinski T.J., Craven K.D. Scavenging organic nitrogen and remodelling lipid metabolism are key survival strategies adopted by the endophytic fungi, Serendipita vermifera and Serendipita bescii to alleviate nitrogen and phosphorous starvation in vitro. Environ. Microbiol. Rep. 2019;11:548–557. doi: 10.1111/1758-2229.12757. PubMed DOI PMC

Hadley G., Ong S.H. Nutritional requirements of orchid endophytes. New Phytol. 1978;81:561–569. doi: 10.1111/j.1469-8137.1978.tb01629.x. DOI

Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014;5:656. doi: 10.3389/fmicb.2014.00656. PubMed DOI PMC

Dijk E., Eck N. Effects of mycorrhizal fungi on in vitro nitrogen response of some Dutch indigenous orchid species. Canad. J. Bot. 1995;73:1203–1211. doi: 10.1139/b95-130. DOI

Vogt-Schilb H., Těšitelová T., Kotilínek M., Sucháček P., Kohout P., Jersáková J. Altered rhizoctonia assemblages in grasslands on ex-arable land support germination of mycorrhizal generalist, not specialist orchids. New Phytol. 2020;227:1200–1212. doi: 10.1111/nph.16604. PubMed DOI

Figura T., Tylová E., Jersáková J., Vohník M., Ponert J. Fungal symbionts may modulate nitrate inhibitory effect on orchid seed germination. Mycorrhiza. 2021;31:231–241. doi: 10.1007/s00572-021-01021-w. PubMed DOI

Zuccaro A., Lahrmann U., Güldener U., Langen G., Pfiffi S., Biedenkopf D., Wong P., Samans B., Grimm C., Basiewicz M., et al. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 2011;7:e1002290. doi: 10.1371/journal.ppat.1002290. PubMed DOI PMC

Stephen R.C., Fung K.K. Nitrogen requirements of the fungal endophytes of Arundina chinensis. Canad. J. Bot. 1971;49:407–410. doi: 10.1139/b71-067. DOI

Hobbie E.A., Sánchez F.S., Rygiewicz P.T. Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures. Mycol. Res. 2004;108:725–736. doi: 10.1017/S0953756204000590. PubMed DOI

Johri A.K., Oelmüller R., Dua M., Yadav V., Kumar M., Tuteja N., Varma A., Bonfante P., Persoon B.L., Stroud R.M. Fungal association and utilization of phosphate by plants: Success, limitations, and future prospects. Front. Microbiol. 2015;6:984. doi: 10.3389/fmicb.2015.00984. PubMed DOI PMC

Jansa J., Finlay R., Wallander H., Smith A., Smith S.E. Role of Mycorrhizal Symbioses in Phosphorus Cycling. In: Bünemann E., Oberson A., Frossard E., editors. Phosphorus in Action: Soil Biology. Volume 26 Springer; Berlin/Heidelberg, Germany: 2011.

Harrison M.J., van Buuren M.L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 1995;378:626–629. doi: 10.1038/378626a0. PubMed DOI

Tatry M.V., Kassis E.E., Lambilliotte R., Corratgé C., Van Aarle I., Amenc L.K., Alary R., Zimmermann S., Sentenac H., Plassard C. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J. 2009;57:1092–1102. doi: 10.1111/j.1365-313X.2008.03749.x. PubMed DOI

Plassard C., Becquer A., Garcia K. Phosphorus transport in mycorrhiza: How far are we? Trends Plant Sci. 2019;24:794–801. doi: 10.1016/j.tplants.2019.06.004. PubMed DOI

Mujica M.I., Cisternas M., Claro A., Simunovic M., Pérez F. Nutrients and fungal identity affect the outcome of symbiotic germination in Bipinnula fimbriata (Orchidaceae) Symbiosis. 2020;83:91–101. doi: 10.1007/s13199-020-00737-1. DOI

Jarosh K.A., Kandeler E., Frossard E., Bünemann E.K. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability? Soil Biol. Biochem. 2019;139:107628. doi: 10.1016/j.soilbio.2019.107628. DOI

Tedersoo L., Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 2019;94:1857–1880. doi: 10.1111/brv.12538. PubMed DOI

Linden B.R. Comparison of radial growth rate of mycorrhizal fungi isolated from 43 species of northern orchids. Karstenia. 1988;28:19–25. doi: 10.29203/ka.1988.256. DOI

Prosser J.I. Kinetics of filamentous growth and branching. In: Gow N.A.R., Gadd G.M., editors. The Growing Fungus. Chapman & Hall; London, UK: 1995. pp. 301–318.

Zheng W., Lehmann A., Ryo M., Vályi K.K., Rilling M.C. Growth rate trades off with enzymatic investment in soil filamentous fungi. Sci. Rep. 2020;10:11013. doi: 10.1038/s41598-020-68099-8. PubMed DOI PMC

Ivarsson M., Drake H., Bengtson S., Rasmussen B. A cryptic alternative for the evolution of hyphae. Bioessays. 2020;42:1900183. doi: 10.1002/bies.201900183. PubMed DOI

Jansa J., Mozafar A., Frossard E. Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil. 2005;276:163–176. doi: 10.1007/s11104-005-4274-0. DOI

Bukovská P., Rozmoš M., Kotianová M., Gančarčíková K., Dudáš M., Hršelová H., Jansa J. Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front. Microbiol. 2021;12:574060. doi: 10.3389/fmicb.2021.574060. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...