Altered rhizoctonia assemblages in grasslands on ex-arable land support germination of mycorrhizal generalist, not specialist orchids
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32285948
DOI
10.1111/nph.16604
Knihovny.cz E-zdroje
- Klíčová slova
- fungal community, high-throughput sequencing, orchid mycorrhizal fungi, phosphorus, protocorm, restored grassland, secondary succession, seed germination,
- MeSH
- klíčení MeSH
- mykorhiza * MeSH
- Orchidaceae * MeSH
- pastviny MeSH
- Rhizoctonia MeSH
- specializace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Species-rich seminatural grasslands in Central Europe have suffered a dramatic loss of biodiversity due to conversion to arable land, but vast areas are being restored. Population recovery of orchids, which depend on mycorrhizal fungi for germination, is however limited. We hypothesised that ploughing and fertilisation caused shifts in orchid mycorrhizal communities in soil and restricted orchid germination. We examined edaphic conditions in 60 restored and seminatural grasslands, and germination success in 10 restored grasslands. Using a newly designed primer, we screened the composition of rhizoctonias in soil, seedlings and roots of seven orchid species. Seminatural and restored grasslands differed significantly in nutrient amounts and rhizoctonia assemblages in soil. While Serendipitaceae prevailed in seminatural grasslands with a higher organic matter content, Ceratobasidiaceae were more frequent in phosphorus-rich restored grasslands with increased abundance on younger restored sites. Tulasnellaceae displayed no preference. Germination success in restored grasslands differed significantly between orchid species; two mycorrhizal generalist species germinated with a broad range of rhizoctonias at most restored grasslands, while germination success of specialists was low. Past agricultural practices have a long-lasting effect on soil conditions and orchid mycorrhizal communities. Altered mycorrhizal availability may be the main reason for low germination success of specialist orchid species.
Faculty of Science Charles University CZ 128 44 Prague 2 Czech Republic
Institute of Microbiology ASCR Vídeňská 1083 142 20 Prague 4 Krč Czech Republic
Zobrazit více v PubMed
Bakker JP, Berendse F. 1999. Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends in Ecology & Evolution 14: 63-68.
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sanchez-Garcia M, Ebersberger I, de Sousa F et al. 2013. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution 4: 914-919.
Beyrle H, Penningsfeld F, Hockf B. 1991. The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. New Phytologist 117: 665-672.
Ceulemans T, Van Geel M, Jacquemyn H, Boeraeve M, Plue J, Saar L, Kasari L, Peeters G, van Acker K, Crauwels S et al. 2019. Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Global Ecology and Biogeography 28: 1796-1805.
Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. 2013. A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS ONE 8: e70837.
Chytrý M, Dražil T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D et al. 2015. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87: 217-278.
Dearnaley JDW, Martos F, Selosse MA. 2012. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B, ed. Fungal associations. The Mycota IX, 2nd edn. Berlin, Germany: Springer, 207-230.
Dearnaley JDW, Perotto S, Selosse MA. 2016. Structure and development of orchid mycorrhizas. In: Martin F, ed. Molecular mycorrhizal symbiosis. Hoboken, NJ, USA: Wiley-Blackwell, 63-86.
Dickie IA, Martínez-García LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ. 2013. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil 367: 11-39.
Dijk E, Willems JH, Van Andel J. 1997. Nutrient responses as a key factor to the ecology of orchid species. Acta Botanica Neerlandica 46: 339-363.
Doyle JJ, Doyle JL. 1987. CTAB DNA extraction in plants. Phytochemical Bulletin 19: 11-15.
Egidi E, May TW, Franks AE. 2018. Seeking the needle in the haystack: undetectability of mycorrhizal fungi outside of the plant rhizosphere associated with an endangered Australian orchid. Fungal Ecology 33: 13-23.
Fagan KC, Pywell RF, Bullock JM, Marrs RH. 2008. Do restored calcareous grasslands on former arable fields resemble ancient targets? The effect of time, methods and environment on outcomes. Journal of Applied Ecology 45: 1293-1303.
Fekete R, Nagy T, Bódis J, Biró É, Löki V, Süveges K, Takacs A, Tokolyi J, Molnár A. 2017. Roadside verges as habitats for endangered lizard-orchids (Himantoglossum spp.): ecological traps or refuges? Science of the Total Environment 607: 1001-1008.
Figura T, Weiser M, Ponert J. 2020. Orchid seed sensitivity to nitrate reflects habitat preferences and soil nitrate content. Plant Biology 22: 21-29.
Fochi V, Falla N, Girlanda M, Perotto S, Balestrini R. 2017. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae. Plant Science 263: 39-45.
Frouz J, Toyota A, Mudrák O, Jílková V, Filipová A, Cajthaml T. 2016. Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession. Soil Biology and Biochemistry 99: 75-84.
Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S. 2011. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. American Journal of Botany 98: 1148-1163.
Griffiths BS, Philippot L. 2012. Insights to resistance and resilience of the soil microbial community. Microbiology Review 30: 60-79.
Harantová L, Mudrák O, Kohout P, Elhottová D, Frouz J, Baldrian P. 2017. Development of microbial community during primary succession in areas degraded by mining activities. Land Degradation & Development 28: 2574-2584.
Harris J. 2009. Soil microbial communities and restoration ecology: facilitators or followers? Science 325: 573-574.
van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310.
Hejcman M, Schellberg J, Pavlů V. 2010. Dactylorhiza maculata, Platanthera bifolia and Listera ovata survive N application under P limitation. Acta Oecologica 36: 684-688.
Hollick PS, McComb JA, Dixon KW. 2007. Introduction, growth and persistence in situ of orchid mycorrhizal fungi. Australian Journal of Botany 55: 665-672.
Holm S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65-70.
Jacquemyn H, Duffy KJ, Selosse MA. 2017. Biogeography of orchid mycorrhizas. In: Tedersoo L, ed. Biogeography of mycorrhizal symbiosis. Ecological studies (analysis and synthesis), vol. 230. Cham, Switzerland: Springer, 159-177.
Jacquemyn H, Honnay O, Cammue BP, Brys R, Lievens B. 2010. Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Molecular Ecology 19: 4086-4095.
Jansa J, Mozafar A, Anken T, Ruh R, Sanders I, Frossard E. 2002. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12: 225-234.
Jongepierová I. 2008. Louky Bílých Karpat [Grasslands of the White Carpathian Mountains]. Veselí nad Moravou: ZO ČSOP Bílé Karpaty, 1-461.
Kardol P, Van der Wal A, Bezemer TM, de Boer W, Duyts H, Holtkamp R, Van der Putten WH. 2008. Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction. Biological Conservation 141: 2208-2217.
Klimešová L. 2019. Amelioration of orchid germination in restored grasslands. Mgr. Thesis, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics 47: 410-415.
Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry 40: 2407-2415.
Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659.
López-García Á, Horn S, Rillig MC, Hempel S. 2016. Spatial and niche-based ecological processes drive the distribution of endophytic Sebacinales in soil and root of grassland communities. FEMS Microbiology Ecology 92: fiw079.
Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963.
Marrs RH. 1993. Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Advances in Ecological Research, Vol. 24. Cambridge, MA, USA: Academic Press, 241-300.
McCormick MK, Taylor DL, Juhaszova K, Burnett RK, Whigham DF, O’Neill J. 2012. Limitations on orchid recruitment: not a simple picture. Molecular Ecology 21: 1511-1523.
Mucina L, Bültmann H, Dierßen K, Theurillat JP, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, Gavilán García R et al. 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19: 3-264.
Mujica MI, Saez N, Cisternas M, Manzano M, Armesto JJ, Pérez F. 2016. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. Annals of Botany 118: 149-158.
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L et al. 2018. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47: 259-264.
Nurfadilah S, Swarts ND, Dixon KW, Lambers H, Merritt DJ. 2013. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Annals of Botany 111: 1233-1241.
Oberwinkler F, Cruz D, Suárez JP. 2017. Biogeography and ecology of Tulasnellaceae. In: Tedersoo L, ed. Biogeography of mycorrhizal symbiosis. Cham, Switzerland: Springer, 237-271.
Ogle SM, Breidt FJ, Paustian K. 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72: 87-121.
Oja J, Kohout P, Tedersoo L, Kull T, Kõljalg U. 2015. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytologist 205: 1608-1618.
Oja J, Vahtra J, Bahram M, Kohout P, Kull T, Rannap R, Tedersoo L. 2017. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza 27: 355-367.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P et al. 2019. Package ‘vegan’. Community Ecology Package, v 2.5-6. [WWW document] URL http://CRAN.R-project.org/package=vegan.
Prach K, Fajmon K, Jongepierová I, Řehounková K. 2015. Landscape context in colonization of restored dry grasslands by target species. Applied Vegetation Science 18: 181-189.
Rasmussen HN. 1995. Terrestrial orchids: from seed to mycotrophic plant. Cambridge, UK: Cambridge University Press.
Rasmussen HN, Whigham DF. 1993. Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. American Journal of Botany 80: 1374-1378.
Ray P, Abraham PE, Guo Y, Giannone RJ, Engle NL, Yang ZK, Jacobson D, Hettich RL, Tschaplinski TJ, Craven KD. 2019. Scavenging organic nitrogen and remodelling lipid metabolism are key survival strategies adopted by the endophytic fungi, Serendipita vermifera and Serendipita bescii to alleviate nitrogen and phosphorous starvation in vitro. Environmental Microbiology Reports 11: 548-557.
R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
Reiter N, Whitfield J, Pollard G, Bedggood W, Argall M, Dixon K, Davis B, Swarts N. 2016. Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecology 217: 81-95.
Riess K, Oberwinkler F, Bauer R, Garnica S. 2014. Communities of endophytic sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov. PLoS ONE 9: e94676.
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.
Sarkar D, Rovenich H, Jeena G, Nizam S, Tissier A, Balcke GU, Mahdi LK, Bonkowski M, Langen G, Zuccaro A. 2019. The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytologist 224: 886-901.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541.
Shefferson RP, Kull T, Tali K. 2008. Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. American Journal of Botany 95: 156-164.
Silvertown J, Wells DA, Gillman M, Dodd ME, Robertson H, Lakhani KH. 1994. Short-term effects and long-term after-effects of fertilizer application on the flowering population of green-winged orchid Orchis morio. Biological Conservation 69: 191-197.
Skaloš J, Weber M, Lipský Z, Trpáková I, Šantrůčková M, Uhlířová L, Kukla P. 2011. Using old military survey maps and orthophotograph maps to analyse long-term land cover changes-Case study (Czech Republic). Applied Geography 31: 426-438.
Slaviero A, Del Vecchio S, Pierce S, Fantinato E, Buffa G. 2016. Plant community attributes affect dry grassland orchid establishment. Plant Ecology 217: 1533-1543.
Taylor DL, McCormick MK. 2008. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytologist 177: 1020-1033.
Těšitel J, Mládek J, Horník J, Těšitelová T, Adamec V, Tichý L. 2017. Suppressing competitive dominants and community restoration with native parasitic plants using the hemiparasitic Rhinanthus alectorolophus and the dominant grass Calamagrostis epigejos. Journal of Applied Ecology 54: 1487-1495.
Těšitelová T, Jersáková J, Roy M, Kubátová B, Těšitel J, Urfus T, Trávníček P, Suda J. 2013. Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytologist 199: 1022-1033.
Těšitelová T, Kotilínek M, Jersáková J, Joly FX, Košnar J, Tatarenko I, Selosse MA. 2015. Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Molecular Ecology 24: 1122-1134.
Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 2005. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters 8: 857-874.
Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11: 1351-1363.
Veldre V, Abarenkov K, Bahram M, Martos F, Selosse MA, Tamm H, Koljalg U, Tedersoo L. 2013. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology 6: 256-268.
Venneman J, De Tender C, Debode J, Audenaert K, Baert G, Vermeir P, Cremelie P, Bekaert B, Landschoot S, Thienpondt B et al. 2019. Sebacinoids within rhizospheric fungal communities associated with subsistence farming in the Congo Basin: a needle in each haystack. FEMS Microbiology Ecology 95: fiz101.
Verbruggen E, Rillig MC, Wehner J, Hegglin D, Wittwer R, van der Heijden MG. 2014. Sebacinales, but not total root associated fungal communities, are affected by land-use intensity. New Phytologist 203: 1036-1040.
Veresoglou SD, Halley JM, Rillig MC. 2015. Extinction risk of soil biota. Nature Communications 6: 8862.
Voyron S, Ercole E, Ghignone S, Perotto S, Girlanda M. 2017. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytologist 213: 1428-1439.
Warcup JH, Talbot PHB. 1971. Perfect states of rhizoctonias associated with orchids. II. New Phytologist 70: 35-40.
Waud M, Busschaert P, Ruyters S, Jacquemyn H, Lievens B. 2014. Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Molecular Ecology Resources 14: 679-699.
Weiß M, Waller F, Zuccaro A, Selosse MA. 2016. Tansley review. Sebacinales -one thousand and one interactions with land plants. New Phytologist 211: 20-40.
Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, Chen Y et al. 2014. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytologist 204: 968-978.
Yan D, Mills JG, Gellie NJ, Bissett A, Lowe AJ, Breed MF. 2018. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biological Conservation 217: 113-120.
Zhang C, Liu G, Song Z, Qu D, Fang L, Deng L. 2017. Natural succession on abandoned cropland effectively decreases the soil erodibility and improves the fungal diversity. Ecological Applications 27: 2142-2154.
Zuccaro A, Lahrmann U, Gueldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M et al. 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathology 7: e1002290.
Variability in Nutrient Use by Orchid Mycorrhizal Fungi in Two Medium Types
Fungal symbionts may modulate nitrate inhibitory effect on orchid seed germination