In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25918582
PubMed Central
PMC4397056
DOI
10.1155/2015/476180
Knihovny.cz E-zdroje
- MeSH
- čaj chemie metabolismus MeSH
- fluorescenční mikroskopie MeSH
- hepatocyty cytologie účinky léků metabolismus MeSH
- jaterní mitochondrie účinky léků metabolismus MeSH
- kaspasa 3 metabolismus MeSH
- katechin analogy a deriváty toxicita MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- oxidativní fosforylace účinky léků MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- TNF-alfa metabolismus MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- čaj MeSH
- epigallocatechin gallate MeSH Prohlížeč
- kaspasa 3 MeSH
- katechin MeSH
- reaktivní formy kyslíku MeSH
- TNF-alfa MeSH
Epigallocatechin-3-gallate (EGCG) is the main compound of green tea with well-described antioxidant, anti-inflammatory, and tumor-suppressing properties. However, EGCG at high doses was reported to cause liver injury. In this study, we evaluated the effect of EGCG on primary culture of rat hepatocytes and on rat liver mitochondria in permeabilized hepatocytes. The 24-hour incubation with EGCG in concentrations of 10 μmol/L and higher led to signs of cellular injury and to a decrease in hepatocyte functions. The effect of EGCG on the formation of reactive oxygen species (ROS) was biphasic. While low doses of EGCG decreased ROS production, the highest tested dose induced a significant increase in ROS formation. Furthermore, we observed a decline in mitochondrial membrane potential in cells exposed to EGCG when compared to control cells. In permeabilized hepatocytes, EGCG caused damage of the outer mitochondrial membrane and an uncoupling of oxidative phosphorylation. EGCG in concentrations lower than 10 μmol/L was recognized as safe for hepatocytes in vitro.
Zobrazit více v PubMed
Kim H.-S., Quon M. J., Kim J.-A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biology. 2014;2(1):187–195. doi: 10.1016/j.redox.2013.12.022. PubMed DOI PMC
Moravcová A., Červinková Z., Kučera O., Mezera V., Lotková H. Antioxidative effect of epigallocatechin gallate against D-galactosamine-induced injury in primary culture of rat hepatocytes. Acta Medica. 2014;57(1):3–8. doi: 10.14712/18059694.2014.1. PubMed DOI
Thangapandiyan S., Miltonprabu S. Epigallocatechin gallate effectively ameliorates fluoride-induced oxidative stress and DNA damage in the liver of rats. Canadian Journal of Physiology and Pharmacology. 2013;91(7):528–537. doi: 10.1139/cjpp-2012-0347. PubMed DOI
Kuzu N., Bahcecioglu I. H., Dagli A. F., Ozercan I. H., Ustündag B., Sahin K. Epigallocatechin gallate attenuates experimental non-alcoholic steatohepatitis induced by high fat diet. Journal of Gastroenterology and Hepatology. 2008;23(8, part 2):e465–e470. doi: 10.1111/j.1440-1746.2007.05052.x. PubMed DOI
Sahin K., Tuzcu M., Gencoglu H., et al. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sciences. 2010;87(7-8):240–245. doi: 10.1016/j.lfs.2010.06.014. PubMed DOI
Thangapandiyan S., Miltonprabu S. Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: role of Nrf2/HO-1 signaling. Toxicology Reports. 2014;1:12–30. doi: 10.1016/j.toxrep.2014.01.002. PubMed DOI PMC
Akhlaghi M., Bandy B. Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxidative Medicine and Cellular Longevity. 2012;2012:9. doi: 10.1155/2012/782321.782321 PubMed DOI PMC
Devika P. T., Stanely Mainzen Prince P. (-)Epigallocatechin-gallate (EGCG) prevents mitochondrial damage in isoproterenol-induced cardiac toxicity in albino Wistar rats: a transmission electron microscopic and in vitro study. Pharmacological Research. 2008;57(5):351–357. doi: 10.1016/j.phrs.2008.03.008. PubMed DOI
Sriram N., Kalayarasan S., Sudhandiran G. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling. Pulmonary Pharmacology and Therapeutics. 2009;22(3):221–236. doi: 10.1016/j.pupt.2008.12.010. PubMed DOI
Surh Y.-J., Kundu J. K., Na H.-K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Medica. 2008;74(13):1526–1539. doi: 10.1055/s-0028-1088302. PubMed DOI
Lambert J. D., Elias R. J. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Archives of Biochemistry and Biophysics. 2010;501(1):65–72. doi: 10.1016/j.abb.2010.06.013. PubMed DOI PMC
Raza H., John A. In vitro protection of reactive oxygen species-induced degradation of lipids, proteins and 2-deoxyribose by tea catechins. Food and Chemical Toxicology. 2007;45(10):1814–1820. doi: 10.1016/j.fct.2007.03.017. PubMed DOI
Han S. G., Han S.-S., Toborek M., Hennig B. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicology and Applied Pharmacology. 2012;261(2):181–188. doi: 10.1016/j.taap.2012.03.024. PubMed DOI PMC
Lin Y.-L., Cheng C.-Y., Lin Y.-P., Lau Y.-W., Juan I.-M., Lin J.-K. effect of green tea leaves through induction of antioxidant and phase II enzymes including superoxide dismutase, catalase, and glutathione S-transferase in rats. Journal of Agricultural and Food Chemistry. 1998;46(5):1893–1899. doi: 10.1021/jf970963q. DOI
Khan S. G., Katiyar S. K., Agarwal R., Mukhtar H. Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Research. 1992;52(14):4050–4052. PubMed
Tipoe G. L., Leung T. M., Liong E. C., Lau T. Y. H., Fung M. L., Nanji A. A. Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology. 2010;273(1–3):45–52. doi: 10.1016/j.tox.2010.04.014. PubMed DOI
Yang F., Oz H. S., Barve S., de Villiers W. J. S., McClain C. J., Varilek G. W. The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-κB activation by inhibiting IκB kinase activity in the intestinal epithelial cell line IEC-6. Molecular Pharmacology. 2001;60(3):528–533. PubMed
Giakoustidis D. E., Giakoustidis A. E., Iliadis S., et al. Attenuation of liver ischemia/reperfusion induced apoptosis by epigallocatechin-3-gallate via down-regulation of NF-κB and c-Jun expression. Journal of Surgical Research. 2010;159(2):720–728. doi: 10.1016/j.jss.2008.08.038. PubMed DOI
Byun E. H., Fujimura Y., Yamada K., Tachibana H. TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. The Journal of Immunology. 2010;185(1):33–45. doi: 10.4049/jimmunol.0903742. PubMed DOI
Yasuda Y., Shimizu M., Sakai H., et al. (-)-Epigallocatechin gallate prevents carbon tetrachloride-induced rat hepatic fibrosis by inhibiting the expression of the PDGFRbeta and IGF-1R. Chemico-Biological Interactions. 2009;182(2-3):159–164. doi: 10.1016/j.cbi.2009.07.015. PubMed DOI
Zhen M.-C., Wang Q., Huang X.-H., et al. Green tea polyphenol epigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbon tetrachloride-induced hepatic fibrosis. Journal of Nutritional Biochemistry. 2007;18(12):795–805. doi: 10.1016/j.jnutbio.2006.12.016. PubMed DOI
Chen J.-H., Tipoe G. L., Liong E. C., et al. Green tea polyphenols prevent toxin-induced hepatotoxicity in mice by down-regulating inducible nitric oxide-derived prooxidants. The American Journal of Clinical Nutrition. 2004;80(3):742–751. PubMed
Yumei F., Zhou Y., Zheng S., Chen A. The antifibrogenic effect of (-)-epigallocatechin gallate results from the induction of de novo synthesis of glutathione in passaged rat hepatic stellate cells. Laboratory Investigation. 2006;86(7):697–709. doi: 10.1038/labinvest.3700425. PubMed DOI
Oz H. S., Chen T. S. Green-tea polyphenols downregulate cyclooxygenase and Bcl-2 activity in acetaminophen-induced hepatotoxicity. Digestive Diseases and Sciences. 2008;53(11):2980–2988. doi: 10.1007/s10620-008-0239-5. PubMed DOI
Abe K., Ijiri M., Suzuki T., Taguchi K., Koyama Y., Isemura M. Green tea with a high catechin content suppresses inflammatory cytokine expression in the galactosamine-injured rat liver. Biomedical Research. 2005;26(5):187–192. doi: 10.2220/biomedres.26.187. PubMed DOI
Zhou J., Farah B. L., Sinha R. A., et al. Epigallocatechin-3-Gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS ONE. 2014;9(1)e87161 PubMed PMC
Chung M.-Y., Park H. J., Manautou J. E., Koo S. I., Bruno R. S. Green tea extract protects against nonalcoholic steatohepatitis in ob/ob mice by decreasing oxidative and nitrative stress responses induced by proinflammatory enzymes. The Journal of Nutritional Biochemistry. 2012;23(4):361–367. doi: 10.1016/j.jnutbio.2011.01.001. PubMed DOI PMC
Fiorini R. N., Donovan J. L., Rodwell D., et al. Short-term administration of (-)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic mice. Liver Transplantation. 2005;11(3):298–308. doi: 10.1002/lt.20348. PubMed DOI
Skrzydlewska E., Ostrowska J., Farbiszewski R., Michalak K. Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomedicine. 2002;9(3):232–238. doi: 10.1078/0944-7113-00119. PubMed DOI
Skrzydlewska E., Ostrowska J., Stankiewicz A., Farbiszewski R. Green tea as a potent antioxidant in alcohol intoxication. Addiction Biology. 2002;7(3):307–314. doi: 10.1080/13556210220139523. PubMed DOI
Arteel G. E., Uesugi T., Bevan L. N., et al. Green tea extract protects against early alcohol-induced liver injury in rats. Biological Chemistry. 2002;383(3-4):663–670. doi: 10.1515/bc.2002.068. PubMed DOI
Kaviarasan S., Sundarapandiyan R., Anuradha C. V. Epigallocatechin gallate, a green tea phytochemical, attenuates alcohol-induced hepatic protein and lipid damage. Toxicology Mechanisms and Methods. 2008;18(8):645–652. doi: 10.1080/15376510701884985. PubMed DOI
Saito Y., Mori H., Takasu C., et al. Beneficial effects of green tea catechin on massive hepatectomy model in rats. Journal of Gastroenterology. 2014;49(4):692–701. doi: 10.1007/s00535-013-0799-9. PubMed DOI
Mezera V., Kučera O., Moravcová A., Peterová E., Červinková Z. Epigallocatechin gallate does not accelerate the early phase of liver regeneration after partial hepatectomy in rats. Digestive Diseases and Sciences. 2014;59(5):976–985. doi: 10.1007/s10620-013-2966-5. PubMed DOI PMC
Katiyar S. K., Afaq F., Perez A., Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis. 2001;22(2):287–294. doi: 10.1093/carcin/22.2.287. PubMed DOI
Lee M. H., Kwon B.-J., Koo M.-A., You K. E., Park J.-C. Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular Signaling by epigallocatechin-3-O-gallate. Oxidative Medicine and Cellular Longevity. 2013;2013:10. doi: 10.1155/2013/827905.827905 PubMed DOI PMC
Potenza M. A., Marasciulo F. L., Tarquinio M., et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. American Journal of Physiology—Endocrinology and Metabolism. 2007;292(5):E1378–E1387. doi: 10.1152/ajpendo.00698.2006. PubMed DOI
Lorenz M., Wessler S., Follmann E., et al. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. The Journal of Biological Chemistry. 2004;279(7):6190–6195. doi: 10.1074/jbc.m309114200. PubMed DOI
Hirsova P., Kolouchova G., Dolezelova E., et al. Epigallocatechin gallate enhances biliary cholesterol secretion in healthy rats and lowers plasma and liver cholesterol in ethinylestradiol-treated rats. European Journal of Pharmacology. 2012;691(1–3):38–45. doi: 10.1016/j.ejphar.2012.06.034. PubMed DOI
Jimenez-Saenz M., Martinez-Sanchez M. d. C. Acute hepatitis associated with the use of green tea infusions. Journal of Hepatology. 2006;44(3):616–617. doi: 10.1016/j.jhep.2005.11.041. PubMed DOI
Lambert J. D., Kennett M. J., Sang S., Reuhl K. R., Ju J., Yang C. S. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food and Chemical Toxicology. 2010;48(1):409–416. doi: 10.1016/j.fct.2009.10.030. PubMed DOI PMC
Schmidt M., Schmitz H.-J., Baumgart A., et al. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food and Chemical Toxicology. 2005;43(2):307–314. doi: 10.1016/j.fct.2004.11.001. PubMed DOI
Galati G., Lin A., Sultan A. M., O'Brien P. J. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radical Biology and Medicine. 2006;40(4):570–580. doi: 10.1016/j.freeradbiomed.2005.09.014. PubMed DOI
Nakagawa H., Hasumi K., Woo J.-T., Nagai K., Wachi M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis. 2004;25(9):1567–1574. doi: 10.1093/carcin/bgh168. PubMed DOI
Pohanka M., Sobotka J., Stetina R. Sulfur mustard induced oxidative stress and its alteration by epigallocatechin gallate. Toxicology Letters. 2011;201(2):105–109. doi: 10.1016/j.toxlet.2010.12.011. PubMed DOI
Goodin M. G., Bray B. J., Rosengren R. J. Sex- and strain-dependent effects of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) in the mouse. Food and Chemical Toxicology. 2006;44(9):1496–1504. doi: 10.1016/j.fct.2006.04.012. PubMed DOI
Valenti D., de Rasmo D., Signorile A., et al. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome. Biochimica et Biophysica Acta. 2013;1832(4):542–552. doi: 10.1016/j.bbadis.2012.12.011. PubMed DOI
Meng Q., Velalar C. N., Ruan R. Regulating the age-related oxidative damage, mitochondrial integrity, and antioxidative enzyme activity in Fischer 344 rats by supplementation of the antioxidant epigallocatechin-3-gallate. Rejuvenation Research. 2008;11(3):649–660. doi: 10.1089/rej.2007.0645. PubMed DOI
Kaviarasan S., Ramamurthy N., Gunasekaran P., Varalakshmi E., Anuradha C. V. Epigallocatechin-3-gallate(-)protects Chang liver cells against ethanol-induced cytotoxicity and apoptosis. Basic and Clinical Pharmacology and Toxicology. 2007;100(3):151–156. doi: 10.1111/j.1742-7843.2006.00036.x. PubMed DOI
Jimenez-Lopez J. M., Cederbaum A. I. Green tea polyphenol epigallocatechin-3-gallate protects HepG2 cells against CYP2E1-dependent toxicity. Free Radical Biology and Medicine. 2004;36(3):359–370. doi: 10.1016/j.freeradbiomed.2003.11.016. PubMed DOI
Zheng J., Ramirez V. D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. British Journal of Pharmacology. 2000;130(5):1115–1123. doi: 10.1038/sj.bjp.0703397. PubMed DOI PMC
Valenti D., de Bari L., Manente G. A., et al. Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells. Biochimica et Biophysica Acta—Molecular Basis of Disease. 2013;1832(12):2085–2096. doi: 10.1016/j.bbadis.2013.07.014. PubMed DOI
Weng Z., Zhou P., Salminen W. F., et al. Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria. Biochemical and Biophysical Research Communications. 2014;443(3):1097–1104. doi: 10.1016/j.bbrc.2013.12.110. PubMed DOI
Berry M. N., Edwards A. M., Barritt G. J. High-yield preparation of isolated hepatocytes from rat liver. In: Burdon R. H., van Knippenberg P. H., editors. Isolated Hepatocytes Preparation, Properties and Application. New York, NY, USA: Elsevier; 1991. pp. 15–58.
Kučera O., Endlicher R., Roušar T., et al. The effect of tert-butyl hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes in vitro . Oxidative Medicine and Cellular Longevity. 2014;2014:12. doi: 10.1155/2014/752506.752506 PubMed DOI PMC
Kučera O., Al-Dury S., Lotková H., Roǔar T., Rychtrmoc D., Červinková Z. Steatotic rat hepatocytes in primary culture are more susceptible to the acute toxic effect of acetaminophen. Physiological Research. 2012;61(2):S93–S101. PubMed
Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI
Červinková Z., Křiváková P., Lábajová A., et al. Mechanisms participating in oxidative damage of isolated rat hepatocytes. Archives of Toxicology. 2009;83(4):363–372. doi: 10.1007/s00204-008-0385-8. PubMed DOI
Mezera V., Kucera O., Moravcova A., Peterova E., Cervinkova Z. The effect of epigallocatechin gallate on hepatocytes isolated from normal and partially hepatectomized rats. Canadian Journal of Physiology and Pharmacology. 2014;92(6):512–517. doi: 10.1139/cjpp-2014-0069. PubMed DOI
Chen L., Lee M.-J., Li H., Yang C. S. Absorption, distribution, and elimination of tea polyphenols in rats. Drug Metabolism and Disposition. 1997;25(9):1045–1050. PubMed
Nakagawa K., Miyazawa T. Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. Journal of Nutritional Science and Vitaminology. 1997;43(6):679–684. doi: 10.3177/jnsv.43.679. PubMed DOI
Isbrucker R. A., Edwards J. A., Wolz E., Davidovich A., Bausch J. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies. Food and Chemical Toxicology. 2006;44(5):636–650. doi: 10.1016/j.fct.2005.11.003. PubMed DOI
Nakagawa K., Okuda S., Miyazawa T. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Bioscience, Biotechnology and Biochemistry. 1997;61(12):1981–1985. doi: 10.1271/bbb.61.1981. PubMed DOI
Ullmann U., Haller J., Decourt J. P., et al. A single ascending dose study of epigallocatechin gallate in healthy volunteers. Journal of International Medical Research. 2003;31(2):88–101. doi: 10.1177/147323000303100205. PubMed DOI
Bosetti F., Baracca A., Lenaz G., Solaini G. Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. The FEBS Letters. 2004;563(1–3):161–164. doi: 10.1016/s0014-5793(04)00294-7. PubMed DOI
Lagoa R., Graziani I., Lopez-Sanchez C., Garcia-Martinez V., Gutierrez-Merino C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochimica et Biophysica Acta. 2011;1807(12):1562–1572. doi: 10.1016/j.bbabio.2011.09.022. PubMed DOI
El Naga R. N. A., Azab S. S., El-Demerdash E., Shaarawy S., El-Merzabani M., Ammar E.-S. M. Sensitization of TRAIL-induced apoptosis in human hepatocellular carcinoma HepG2 cells by phytochemicals. Life Sciences. 2013;92(10):555–561. doi: 10.1016/j.lfs.2013.01.017. PubMed DOI
Gores G. J., Herman B., Lemasters J. J. Plasma membrane bleb formation and rupture: a common feature of hepatocellular injury. Hepatology. 1990;11(4):690–698. doi: 10.1002/hep.1840110425. PubMed DOI
Brown G. C., Borutaite V. Regulation of apoptosis by the redox state of cytochrome c . Biochimica et Biophysica Acta. 2008;1777(7-8):877–881. doi: 10.1016/j.bbabio.2008.03.024. PubMed DOI
Vergote D., Cren-Olivé C., Chopin V., et al. (-)-Epigallocatechin (EGC) of green tea induces apoptosis of human breast cancer cells but not of their normal counterparts. Breast Cancer Research and Treatment. 2002;76(3):195–201. doi: 10.1023/a:1020833410523. PubMed DOI
Yang F., de Villiers W. J. S., McClain C. J., Varilek G. W. Green tea polyphenols block endotoxin-induced tumor necrosis factor- production and lethality in a murine model. Journal of Nutrition. 1998;128(12):2334–2340. PubMed