The effect of tert-butyl hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes in vitro
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24847414
PubMed Central
PMC4009166
DOI
10.1155/2014/752506
Knihovny.cz E-zdroje
- MeSH
- dieta s vysokým obsahem tuků MeSH
- glutathion metabolismus MeSH
- hepatocyty účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- malondialdehyd metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- nealkoholová steatóza jater metabolismus patologie MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- terc-butylhydroperoxid toxicita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutathion MeSH
- L-laktátdehydrogenasa MeSH
- malondialdehyd MeSH
- reaktivní formy kyslíku MeSH
- terc-butylhydroperoxid MeSH
Oxidative stress and mitochondrial dysfunction play an important role in the pathogenesis of nonalcoholic fatty liver disease and toxic liver injury. The present study was designed to evaluate the effect of exogenous inducer of oxidative stress (tert-butyl hydroperoxide, tBHP) on nonfatty and steatotic hepatocytes isolated from the liver of rats fed by standard and high-fat diet, respectively. In control steatotic hepatocytes, we found higher generation of ROS, increased lipoperoxidation, an altered redox state of glutathione, and decreased ADP-stimulated respiration using NADH-linked substrates, as compared to intact lean hepatocytes. Fatty hepatocytes exposed to tBHP exert more severe damage, lower reduced glutathione to total glutathione ratio, and higher formation of ROS and production of malondialdehyde and are more susceptible to tBHP-induced decrease in mitochondrial membrane potential. Respiratory control ratio of complex I was significantly reduced by tBHP in both lean and steatotic hepatocytes, but reduction in NADH-dependent state 3 respiration was more severe in fatty cells. In summary, our results collectively indicate that steatotic rat hepatocytes occur under conditions of enhanced oxidative stress and are more sensitive to the exogenous source of oxidative injury. This confirms the hypothesis of steatosis being the first hit sensitizing hepatocytes to further damage.
Zobrazit více v PubMed
Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Alimentary Pharmacology and Therapeutics. 2011;34(3):274–285. PubMed
Williams R. Global challenges in liver disease. Hepatology. 2006;44(3):521–526. PubMed
Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology and Medicine. 2012;52(1):59–69. PubMed
Pessayre D, Fromenty B. NASH: a mitochondrial disease. Journal of Hepatology. 2005;42(6):928–940. PubMed
Wei Y, Rector RS, Thyfault JP, Ibdah JA. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World Journal of Gastroenterology. 2008;14(2):193–199. PubMed PMC
Serviddio G, Sastre J, Bellanti F, Viña J, Vendemiale G, Altomare E. Mitochondrial involvement in non-alcoholic steatohepatitis. Molecular Aspects of Medicine. 2008;29(1-2):22–35. PubMed
Gambino R, Musso G, Cassader M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: mechanisms and therapeutic opportunities. Antioxidants and Redox Signaling. 2011;15(5):1325–1365. PubMed
Garcia-Ruiz C, Colell A, Morales A, Kaplowitz N, Fernandez-Checa JC. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-κB: studies with isolated mitochondria and rat hepatocytes. Molecular Pharmacology. 1995;48(5):825–834. PubMed
Cervinkova Z, Lotkova H, Krivakova P, et al. Evaluation of mitochondrial function in isolated rat hepatocytes and mitochondria during oxidative stress. Alternatives to Laboratory Animals. 2007;35(3):353–361. PubMed
Gao D, Wei C, Chen L, Huang J, Yang S, Diehl AM. Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2004;287(5):G1070–G1077. PubMed
Day CP. From fat to inflammation. Gastroenterology. 2006;130(1):207–210. PubMed
Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicological Sciences. 2002;65(2):166–176. PubMed
Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47(5):1495–1503. PubMed PMC
Kučera O, Lotková H, Staňková P, et al. Is rat liver affected by non-alcoholic steatosis more susceptible to the acute toxic effect of thioacetamide? International Journal of Experimental Pathology. 2011;92(4):281–289. PubMed PMC
Kučera O, Roušar T, Staňková P, et al. Susceptibility of rat non-alcoholic fatty liver to the acute toxic effect of acetaminophen. Journal of Gastroenterology and Hepatology. 2012;27(2):323–330. PubMed
Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J, Mason RP. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radical Biology and Medicine. 2012;52(9):1666–1679. PubMed PMC
Kučera O, Al-Dury S, Lotková H, Roušar T, Rychtrmoc D, Červinková Z. Steatotic rat hepatocytes in primary culture are more susceptible to the acute toxic effect of acetaminophen. Physiological Research. 2012;61(supplement 2):S93–S101. PubMed
Tarantino G, Conca P, Basile V, et al. A prospective study of acute drug-induced liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatology Research. 2007;37(6):410–415. PubMed
Davies MJ. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. Biochemical Journal. 1989;257(2):603–606. PubMed PMC
Crane D, Haussinger D, Graf P, Sies H. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie. 1983;364(8):977–987. PubMed
Kučera O, Garnol T, Lotková H, et al. The effect of rat strain, diet composition and feeding period on the development of a nutritional model of non-alcoholic fatty liver disease in rats. Physiological Research. 2011;60(2):317–328. PubMed
Berry MN. Chapter 2 High-yield preparation of isolated hepatocytes from rat liver. In: Burdon RH, Knippenberg PHV, editors. Laboratory Techniques in Biochemistry and Molecular Biology. New York, NY, USA: Elsevier; 1991. pp. 15–58.
Lotková H, Kučera O, Roušar T, et al. Effect of s-adenosylmethionine on acetaminophen-induced toxic injury of rat hepatocytes in vitro . Acta Veterinaria Brno. 2009;78(4):603–613.
Roušar T, Kučera O, Lotková H, Červinková Z. Assessment of reduced glutathione: comparison of an optimized fluorometric assay with enzymatic recycling method. Analytical Biochemistry. 2012;423(2):236–240. PubMed
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351–358. PubMed
Cervinkova Z, Krivakova P, Labajova A, et al. Mechanisms participating in oxidative damage of isolated rat hepatocytes. Archives of Toxicology. 2009;83(4):363–372. PubMed
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metabolism Reviews. 2012;44(1):88–106. PubMed PMC
Serviddio G, Bellanti F, Vendemiale G. Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radical Biology and Medicine. 2013;65:952–968. PubMed
Videla LA, Rodrigo R, Orellana M, et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clinical Science. 2004;106(3):261–268. PubMed
Anavi S, Harmelin NB, Madar Z, Tirosh O. Oxidative stress impairs HIF1α activation: a novel mechanism for increased vulnerability of steatotic hepatocytes to hypoxic stress. Free Radical Biology and Medicine. 2012;52(9):1531–1542. PubMed
Garcia MC, Amankwa-Sakyi M, Flynn TJ. Cellular glutathione in fatty liver in vitro models. Toxicology in Vitro. 2011;25(7):1501–1506. PubMed
Grattagliano I, Caraceni P, Calamita G, et al. Severe liver steatosis correlates with nitrosative and oxidative stress in rats. European Journal of Clinical Investigation. 2008;38(7):523–530. PubMed
Latour I, De Ros E, Denef J, Buc Calderon P. Protein S-thiolation can mediate the inhibition of protein synthesis induced by tert-butyl hydroperoxide in isolated rat hepatocytes. Toxicology and Applied Pharmacology. 1999;160(1):1–9. PubMed
Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84(2-3):153–166. PubMed
Imberti R, Nieminen A-L, Herman B, Lemasters JJ. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. Journal of Pharmacology and Experimental Therapeutics. 1993;265(1):392–400. PubMed
Broekemeier KM, Pfeiffer DR. Inhibition of the mitochondrial permeability transition by cyclosporin A during long time frame experiments: relationship between pore opening and the activity of mitochondrial phospholipases. Biochemistry. 1995;34(50):16440–16449. PubMed
Shen HM, Yang CF, Ding WX, Liu J, Ong CN. Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG2 cells: mitochondria serve as the main target. Free Radical Biology and Medicine. 2001;30(1):9–21. PubMed
Rashba-Step J, Tatoyan A, Duncan R, Ann D, Pushpa-Rehka TR, Sevanian A. Phospholipid peroxidation induces cytosolic phospholipase A2 activity: membrane effects versus enzyme phosphorylation. Archives of Biochemistry and Biophysics. 1997;343(1):44–54. PubMed
Madesh M, Balasubramanian KA. Activation of liver mitochondrial phospholipase A2 by superoxide. Archives of Biochemistry and Biophysics. 1997;346(2):187–192. PubMed
Gadd ME, Broekemeier KM, Crouser ED, Kumar J, Graff G, Pfeiffer DR. Mitochondrial iPLA2 activity modulates the release of cytochrome c from mitochondria and influences the permeability transition. Journal of Biological Chemistry. 2006;281(11):6931–6939. PubMed
Bohm T, Berger H, Nejabat M, et al. Food-derived peroxidized fatty acids may trigger hepatic inflammation: a novel hypothesis to explain steatohepatitis. Journal of Hepatology. 2013;59(3):563–570. PubMed
Singh R, Wang Y, Schattenberg JM, Xiang Y, Czaja MJ. Chronic oxidative stress sensitizes hepatocytes to death from 4-hydroxynonenal by JNK/c-Jun overactivation. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2009;297(5):G907–G917. PubMed PMC
Pérez-Carreras M, Del Hoyo P, Martín MA, et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 2003;38(4):999–1007. PubMed
Cardoso AR, Kakimoto PA, Kowaltowski AJ. Diet-sensitive sources of reactive oxygen species in liver mitochondria: role of very long chain acyl-CoA dehydrogenases. PLoS ONE. 2013;8(10)e77088 PubMed PMC
Ricci J-E, Waterhouse N, Green DR. Mitochondrial functions during cell death, a complex (I-V) dilemma. Cell Death and Differentiation. 2003;10(5):488–492. PubMed
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. Journal of Clinical Investigation. 2004;114(2):147–152. PubMed PMC
Garnol T, Endlicher R, Kucera O, Drahota Z, Cervinkova Z. Impairment of mitochondrial function of rat hepatocytes by high fat diet and oxidative stress. Physiological Research. 2014 PubMed
Drahota Z, Křiváková P, Červinková Z, et al. Tert-butyl hydroperoxide selectively inhibits mitochondrial respiratory-chain enzymes in isolated rat hepatocytes. Physiological Research. 2005;54(1):67–72. PubMed
Endlicher R, Křiváková P, Rauchová H, Nůsková H, Červinková Z, Drahota Z. Peroxidative damage of mitochondrial respiration is substrate-dependent. Physiological Research. 2009;58(5):685–692. PubMed
Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochemical Journal. 2002;368(2):545–553. PubMed PMC
Rolfe DF, Hulbert AJ, Brand MD. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochimica et Biophysica Acta-Bioenergetics. 1994;1188(3):405–416. PubMed
Sipos I, Tretter L, Adam-Vizi V. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential. Neurochemical Research. 2003;28(10):1575–1581. PubMed
Chen J, Petersen DR, Schenker S, Henderson GI. Formation of malondialdehyde adducts in livers of rats exposed to ethanol: role in ethanol mediated inhibition of cytochrome c oxidase. Alcoholism: Clinical and Experimental Research. 2000;24(4):544–552. PubMed
Turrens JF. Mitochondrial formation of reactive oxygen species. Journal of Physiology. 2003;552(2):335–344. PubMed PMC
In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes