De novo mutations in the GTP/GDP-binding region of RALA, a RAS-like small GTPase, cause intellectual disability and developmental delay

. 2018 Nov ; 14 (11) : e1007671. [epub] 20181130

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30500825

Grantová podpora
K01 ES025435 NIEHS NIH HHS - United States
U01 HG007301 NHGRI NIH HHS - United States
UM1 HG007301 NHGRI NIH HHS - United States

Odkazy

PubMed 30500825
PubMed Central PMC6291162
DOI 10.1371/journal.pgen.1007671
PII: PGENETICS-D-18-01318
Knihovny.cz E-zdroje

Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.

Arnold Palmer Hospital Division of Genetics Orlando FL United States of America

Assistance Publique Hôpitaux de Paris service de Génétique Hôpital Necker Enfants Malades Paris France

Centre de Référence Déficiences Intellectuelles de Causes Rares Paris France

Department of Biology and Medical Genetics Charles University 2nd Faculty of Medicine and University Hospital Motol Prague Czech Republic

Department of Emerging Genetic Medicine Ambry Genetics Aliso Viejo CA United States of America

Department of Genetics Children's Hospital New Orleans LA United States of America

Department of Genetics La Pitié Salpêtrière Hospital Assistance Publique Hôpitaux de Paris Paris France

Department of Genetics McMaster Children's Hospital Hamilton Ontario Canada

Department of Genetics University of Alabama at Birmingham Birmingham AL United States of America

Department of Pediatrics and Adolescent Medicine Diagnostic and Research Unit for Rare Diseases Charles University 1st Faculty of Medicine and General University Hospital Prague Czech Republic

Department of Pediatrics and Human Development Michigan State University East Lansing MI United States of America

Division of Clinical Genetics Department of Pediatrics Columbia University Medical Center New York NY United States of America

Division of Clinical Genetics Louisiana State University Health Sciences Center New Orleans LA United States of America

Division of Pediatric Neurology University of Tennessee Health Science Center Neuroscience Institute and Le Bonheur Comprehensive Epilepsy Program Memphis TN United States of America

GeneDx Gaithersburg MD United States of America

Groupe de Recherche Clinique UPMC Déficience Intellectuelle et Autisme Paris France

HudsonAlpha Institute for Biotechnology Huntsville AL United States of America

Institute for Genomic Medicine Columbia University Medical Center New York NY United States of America

Kaiser Permanente Hawaii Honolulu HI United States of America

Laboratory of NMR Spectroscopy University of Chemistry and Technology Prague Czech Republic

Le Bonheur Children's Hospital Memphis TN United States of America

Komentář v

PubMed

Zobrazit více v PubMed

Ropers HH. Genetics of intellectual disability. Curr Opin Genet Dev. 2008;18(3):241–50. 10.1016/j.gde.2008.07.008 PubMed DOI

Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–9. 10.1001/jama.2014.14601 PubMed DOI PMC

Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet. 2015;47(7):717–26. 10.1038/ng.3304 PubMed DOI PMC

Niemi M, Martin HC, Rice DL, Gallone G, Gordon S, Kelemen M. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders; 2018. Preprint. Available from bioRxiv: 10.1101/309070. PubMed DOI PMC

Simanshu DK, Nissley DV, McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell. 2017;170(1):17–33. 10.1016/j.cell.2017.06.009 PubMed DOI PMC

Cao H, Alrejaye N, Klein OD, Goodwin AF, Oberoi S. A review of craniofacial and dental findings of the RASopathies. Orthod Craniofac Res. 2017;20 Suppl 1:32–8. PubMed PMC

Altmuller F, Lissewski C, Bertola D, Flex E, Stark Z, Spranger S, et al. Genotype and phenotype spectrum of NRAS germline variants. Eur J Hum Genet. 2017;25(7):823–31. 10.1038/ejhg.2017.65 PubMed DOI PMC

Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–30. 10.1002/humu.22844 PubMed DOI PMC

Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5. 10.1038/ng.2892 PubMed DOI PMC

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. 10.1038/nature19057 PubMed DOI PMC

The NHLBI Trans-Omics for Precision Medicine (TOPMed) Whole Genome Sequencing Program. BRAVO variant browser. University of Michigan and NHLBI; 2018. [cited 20 June 2018]. Available from: https://bravo.sph.umich.edu/freeze5/hg38/.

Wilson JM, Prokop JW, Lorimer E, Ntantie E, Williams CL. Differences in the Phosphorylation-Dependent Regulation of Prenylation of Rap1A and Rap1B. J Mol Biol. 2016;428(24 Pt B):4929–45. PubMed PMC

Wu JC, Chen TY, Yu CT, Tsai SJ, Hsu JM, Tang MJ, et al. Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J Biol Chem. 2005;280(10):9013–22. 10.1074/jbc.M411068200 PubMed DOI

Lim KH, Brady DC, Kashatus DF, Ancrile BB, Der CJ, Cox AD, et al. Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol Cell Biol. 2010;30(2):508–23. 10.1128/MCB.00916-08 PubMed DOI PMC

Gentry LR, Nishimura A, Cox AD, Martin TD, Tsygankov D, Nishida M, et al. Divergent roles of CAAX motif-signaled posttranslational modifications in the regulation and subcellular localization of Ral GTPases. J Biol Chem. 2015;290(37):22851–61. 10.1074/jbc.M115.656710 PubMed DOI PMC

Kinsella BT, Erdman RA, Maltese WA. Carboxyl-terminal isoprenylation of ras-related GTP-binding proteins encoded by rac1, rac2, and ralA. J Biol Chem. 1991;266(15):9786–94. PubMed

Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46(9):944–50. 10.1038/ng.3050 PubMed DOI PMC

Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013;9(8):e1003709 10.1371/journal.pgen.1003709 PubMed DOI PMC

Petrovski S, Ren N, Goldstein D. Genic Intolerance. Institute for Genomic Medicine. 2018. [cited 20 June 2018]. Available from: http://genic-intolerance.org/about.jsp.

Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38(3):331–6. 10.1038/ng1748 PubMed DOI

Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, et al. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat. 2011;32(1):33–43. 10.1002/humu.21377 PubMed DOI PMC

Kerr B, Delrue MA, Sigaudy S, Perveen R, Marche M, Burgelin I, et al. Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 43 cases. J Med Genet. 2006;43(5):401–5. 10.1136/jmg.2005.040352 PubMed DOI PMC

Chiu AT, Leung GK, Chu YW, Gripp KW, Chung BH. A novel patient with an attenuated Costello syndrome phenotype due to an HRAS mutation affecting codon 146-Literature review and update. Am J Med Genet A. 2017;173(4):1109–14. 10.1002/ajmg.a.38118 PubMed DOI

Edkins S, O'Meara S, Parker A, Stevens C, Reis M, Jones S, et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther. 2006;5(8):928–32. PubMed PMC

Ge X, Gong H, Dumas K, Litwin J, Phillips JJ, Waisfisz Q, et al. Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation. NPJ Genom Med. 2016;1. PubMed PMC

Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR. Activation of RalA is required for insulin-stimulated Glut4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. Dev Cell. 2007;13(3):391–404. 10.1016/j.devcel.2007.07.007 PubMed DOI

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. 10.1038/gim.2015.30 PubMed DOI PMC

Zheng M, Zhang X, Sun N, Min C, Zhang X, Kim KM. RalA employs GRK2 and beta-arrestins for the filamin A-mediated regulation of trafficking and signaling of dopamine D2 and D3 receptor. Biochim Biophys Acta. 2016;1863(8):2072–83. 10.1016/j.bbamcr.2016.05.010 PubMed DOI

National Library of Medicine (US). 1q21.1 microduplication: Genetics Home Reference [Internet]. Bethesda, MD. 2018 [cited 26 June 2018]. Available from: https://ghr.nlm.nih.gov/condition/1q211-microduplication.

Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. A subcellular map of the human proteome. Science. 2017;356(6340). Available from: v18.proteinatlas.org, https://www.proteinatlas.org/ENSG00000006451-RALA/tissue, https://www.proteinatlas.org/ENSG00000144118-RALB/tissue). Cited 27 June 2018. PubMed

Peschard P, McCarthy A, Leblanc-Dominguez V, Yeo M, Guichard S, Stamp G, et al. Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol. 2012;22(21):2063–8. 10.1016/j.cub.2012.09.013 PubMed DOI

Carmena A, Makarova A, Speicher S. The Rap1-Rgl-Ral signaling network regulates neuroblast cortical polarity and spindle orientation. J Cell Biol. 2011;195(4):553–62. 10.1083/jcb.201108112 PubMed DOI PMC

Jossin Y, Cooper JA. Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat Neurosci. 2011;14(6):697–703. 10.1038/nn.2816 PubMed DOI PMC

Lalli G, Hall A. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J Cell Biol. 2005;171(5):857–69. 10.1083/jcb.200507061 PubMed DOI PMC

Teodoro RO, Pekkurnaz G, Nasser A, Higashi-Kovtun ME, Balakireva M, McLachlan IG, et al. Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst. EMBO J. 2013;32(14):2039–55. 10.1038/emboj.2013.147 PubMed DOI PMC

Lalli G. RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC. J Cell Sci. 2009;122(Pt 10):1499–506. 10.1242/jcs.044339 PubMed DOI

Polzin A, Shipitsin M, Goi T, Feig LA, Turner TJ. Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles. Mol Cell Biol. 2002;22(6):1714–22. 10.1128/MCB.22.6.1714-1722.2002 PubMed DOI PMC

Holbourn KP, Sutton JM, Evans HR, Shone CC, Acharya KR. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase. Proc Natl Acad Sci U S A. 2005;102(15):5357–62. 10.1073/pnas.0501525102 PubMed DOI PMC

DeLano WL. PyMOL. DeLano Scientific, San Carlos, CA, USA. 2002.

Prokop JW, Lazar J, Crapitto G, Smith DC, Worthey EA, Jacob HJ. Molecular modeling in the age of clinical genomics, the enterprise of the next generation. J Mol Model. 2017;23(3):75 10.1007/s00894-017-3258-3 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...