Impaired mitochondrial functions contribute to 3-bromopyruvate toxicity in primary rat and mouse hepatocytes

. 2016 Aug ; 48 (4) : 363-73. [epub] 20160816

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27530389
Odkazy

PubMed 27530389
DOI 10.1007/s10863-016-9674-8
PII: 10.1007/s10863-016-9674-8
Knihovny.cz E-zdroje

A compound with promising anticancer properties, 3-bromopyruvate (3-BP) is a synthetic derivative of a pyruvate molecule; however, its toxicity in non-malignant cells has not yet been fully elucidated. Therefore, we elected to study the effects of 3-BP on primary hepatocytes in monolayer cultures, permeabilized hepatocytes and isolated mitochondria. After a 1-h treatment with 100 μM 3-BP cell viability of rat hepatocytes was decreased by 30 % as measured by the WST-1 test (p < 0.001); after 3-h exposure to ≥200 μM 3-BP lactate dehydrogenase leakage was increased (p < 0.001). Reactive oxygen species production was increased in the cell cultures after a 1-h treatment at concentrations ≥100 μmol/l (p < 0.01), and caspase 3 activity was increased after a 20-h incubation with 150 μM and 200 μM 3-BP (p < 0.001). This toxic effect of 3-BP was also proved using primary mouse hepatocytes. In isolated mitochondria, 3-BP induced a dose- and time-dependent decrease of mitochondrial membrane potential during a 10-min incubation both with Complex I substrates glutamate + malate or Complex II substrate succinate, although this decrease was more pronounced with the latter. We also measured the effect of 3-BP on respiration of isolated mitochondria. ADP-activated respiration was inhibited by 20 μM 3-BP within 10 min. Similar effects were also found in permeabilized hepatocytes of both species.

Zobrazit více v PubMed

PLoS Biol. 2015 Dec 01;13(12):e1002309 PubMed

Science. 1956 Aug 10;124(3215):269-70 PubMed

FEBS Lett. 1976 Oct 1;68(2):191-7 PubMed

J Bioenerg Biomembr. 2007 Jun;39(3):211-22 PubMed

Physiol Res. 2012;61 Suppl 2:S93-101 PubMed

J Bioenerg Biomembr. 2012 Feb;44(1):17-29 PubMed

PLoS One. 2014 Nov 05;9(11):e112132 PubMed

J Bioenerg Biomembr. 2012 Feb;44(1):163-70 PubMed

Tumour Biol. 2016 Mar;37(3):3543-8 PubMed

BMC Res Notes. 2013 Jul 17;6:277 PubMed

J Bioenerg Biomembr. 2016 Feb;48(1):23-32 PubMed

J Bioenerg Biomembr. 2015 Aug;47(4):319-29 PubMed

Biochem Biophys Res Commun. 2004 Nov 5;324(1):269-75 PubMed

Biochem J. 2009 Feb 1;417(3):717-26 PubMed

Med Chem. 2009 Nov;5(6):491-6 PubMed

J Bioenerg Biomembr. 2012 Feb;44(1):39-49 PubMed

J Bioenerg Biomembr. 2008 Dec;40(6):607-18 PubMed

Mol Aspects Med. 2007 Oct-Dec;28(5-6):607-45 PubMed

Cancer Lett. 2001 Nov 8;173(1):83-91 PubMed

Methods Mol Biol. 2012;810:25-58 PubMed

Oxid Med Cell Longev. 2014;2014:752506 PubMed

J Physiol Pharmacol. 2015 Dec;66(6):863-73 PubMed

Biochim Biophys Acta. 1971 Feb 10;227(2):219-31 PubMed

Biochim Biophys Acta. 2009 May;1787(5):553-60 PubMed

Mitochondrion. 2011 Sep;11(5):722-8 PubMed

Cell Biol Int. 2013 Dec;37(12):1285-90 PubMed

Korean J Radiol. 2009 Nov-Dec;10 (6):596-603 PubMed

Cancer Res. 2002 Jul 15;62(14):3909-13 PubMed

Cancer Prev Res (Phila). 2015 Apr;8(4):318-26 PubMed

Biochem Pharmacol. 2014 Nov 1;92(1):12-21 PubMed

J Bioenerg Biomembr. 2007 Feb;39(1):1-12 PubMed

Cancer Res. 2005 Jan 15;65(2):613-21 PubMed

Cancer Prev Res (Phila). 2012 May;5(5):717-25 PubMed

Oncotarget. 2015 Sep 22;6(28):25677-95 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Cancer Gene Ther. 2012 Jan;19(1):1-18 PubMed

J Neurosci Res. 2015 Jul;93(7):1138-46 PubMed

Oncol Lett. 2015 Feb;9(2):739-744 PubMed

J Bioenerg Biomembr. 2012 Jun;44(3):309-15 PubMed

Cell Death Dis. 2015 May 07;6:e1749 PubMed

J Bioenerg Biomembr. 2012 Feb;44(1):7-15 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...