Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification

. 2025 Jan ; 23 (1) : 174-197. [epub] 20241022

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39436777

Grantová podpora
2020-04720 Vetenskapsrådet
Kempestiftelserna
Knut och Alice Wallenbergs Stiftelse
VINNOVA
ValueTree RBP14-0011 Stiftelsen för Strategisk Forskning
20-25948Y Grantová Agentura České Republiky
Trees for the Future
Bio4Energy

Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from Aspergillus nidulans in hybrid aspen (Populus tremula L. × tremuloides Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.

Zobrazit více v PubMed

Abreu, I.N. , Johansson, A.I. , Sokołowska, K. , Niittylä, T. , Sundberg, B. , Hvidsten, T.R. , Street, N.R. et al. (2020) A metabolite roadmap of the wood‐forming tissue in Populus tremula . New Phytol. 228, 1559–1572. PubMed

Albersheim, P. , Darvill, A. , Roberts, K. , Sederoff, R. and Staehelin, A. (2010) Plant Cell Walls. New York: Garland Science, Taylor & Francis Group LLC.

Anderson, J.P. , Badruzsaufari, E. , Schenk, P.M. , Manners, J.M. , Desmond, O.J. , Ehlert, C. , Maclean, D.J. et al. (2004) Antagonistic interaction between abscisic acid and jasmonate‐ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis . Plant Cell 16, 3460–3479. PubMed PMC

Bacete, L. and Hamann, T. (2020) The role of mechanoperception in plant cell wall integrity maintenance. Plan. Theory 9, 574. PubMed PMC

Bacete, L. , Mélida, H. , López, G. , Dabos, P. , Tremousaygue, D. , Denancé, N. , Miedes, E. et al. (2020) ARABIDOPSIS RESPONSE REGULATOR 6 (ARR6) modulates plant cell‐wall composition and disease resistance. Mol. Plant‐Microbe Interact. 33, 767–780. PubMed

Bacete, L. , Schulz, J. , Engelsdorf, T. , Bartosova, Z. , Vaahtera, L. , Yan, G. , Gerhold, J.M. et al. (2022) THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA 119, e2119258119. PubMed PMC

Barbut, F.R. , Cavel, E. , Donev, E.N. , Gaboreanu, I. , Urbancsok, J. , Pandey, G. , Demailly, H. et al. (2024) Integrity of Xylan backbone affects plant responses to drought. Front. Plant Sci. 15, 1422701. PubMed PMC

Bar‐On, Y.M. , Phillips, R. and Milo, R. (2018) The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511. PubMed PMC

Bauer, S. , Vasu, P. , Persson, S. , Mort, A.J. and Somerville, C.R. (2006) Development and application of a suite of polysaccharide‐degrading enzymes for analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 103, 11417–11422. PubMed PMC

Bavnhøj, L. , Paulsen, P.A. , Flores‐Canales, J.C. , Schiøtt, B. and Pedersen, B.P. (2021) Molecular mechanism of sugar transport in plants unveiled by structures of glucose/H+ symporter STP10. Nat. Plants 7, 1409–1419. PubMed

Bi, G. , Su, M. , Li, N. , Liang, Y. , Dang, S. , Xu, J. , Hu, M. et al. (2021) The ZAR1 resistosome is a calcium‐permeable channel triggering plant immune signaling. Cell 184, 3528–3541.e12. PubMed

Biely, P. , Vrsanská, M. , Tenkanen, M. and Kluepfel, D. (1997) Endo‐beta‐1,4‐xylanase families: differences in catalytic properties. J. Biotechnol. 57, 151–166. PubMed

Biely, P. , Singh, S. and Puchart, V. (2016) Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnol. Adv. 34, 1260–1274. PubMed

Bishopp, A. , Benková, E. and Helariutta, Y. (2011) Sending mixed messages: auxin‐cytokinin crosstalk in roots. Curr. Opin. Plant Biol. 14, 10–16. PubMed

Biswal, A.K. , Hao, Z. , Pattathil, S. , Yang, X. , Winkeler, K. , Collins, C. , Mohanty, S.S. et al. (2015) Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol. Biofuels 8, 41. PubMed PMC

Bromley, J.R. , Busse‐Wicher, M. , Tryfona, T. , Mortimer, J.C. , Zhang, Z. , Brown, D.M. and Dupree, P. (2013) GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J. 74, 423–434. PubMed

Brown, D.M. , Zeef, L.A. , Ellis, J. , Goodacre, R. and Turner, S.R. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, 2281–2295. PubMed PMC

Busse‐Wicher, M. , Gomes, T.C.F. , Tryfona, T. , Nikolovski, N. , Stott, K. , Grantham, N.J. , Bolam, D.N. et al. (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana . Plant J. 79, 492–506. PubMed PMC

Cantarel, B.L. , Coutinho, P.M. , Rancurel, C. , Bernard, T. , Lombard, V. and Henrissat, B. (2009) The Carbohydrate‐Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238. PubMed PMC

Cavalier, D.M. and Keegstra, K. (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J. Biol. Chem. 281, 34197–34207. PubMed

Chang, S. , Puryear, J. and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11, 113–116.

Chang, N. , Sun, Q. , Li, Y. , Mu, Y. , Hu, J. , Feng, Y. , Liu, X. et al. (2017) PDV2 has a dosage effect on chloroplast division in Arabidopsis . Plant Cell Rep. 36, 471–480. PubMed

Chen, H. , Wang, J.P. , Liu, H. , Li, H. , Lin, Y.J. , Shi, R. , Yang, C. et al. (2019) Hierarchical transcription factor and chromatin binding network for wood formation in black cottonwood (Populus trichocarpa). Plant Cell 31, 602–626. PubMed PMC

Chong, S.L. , Koutaniemi, S. , Virkki, L. , Pynnönen, H. , Tuomainen, P. and Tenkanen, M. (2013) Quantitation of 4‐O‐methylglucuronic acid from plant cell walls. Carbohydr. Polym. 91, 626–630. PubMed

DeMartini, J.D. , Pattathil, S. , Miller, J.S. , Li, H. , Hahn, M.G. and Wyman, C.E. (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ. Sci. 6, 898–909.

Derba‐Maceluch, M. , Awano, T. , Takahashi, J. , Lucenius, J. , Ratke, C. , Kontro, I. , Busse‐Wicher, M. et al. (2015) Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. New Phytol. 205, 666–681. PubMed

Derba‐Maceluch, M. , Sivan, P. , Donev, E.N. , Gandla, M.L. , Yassin, Z. , Vaasan, R. , Heinonen, E. et al. (2023) Impact of xylan on field productivity and wood saccharification properties in aspen. Front. Plant Sci. 14, 1218302. PubMed PMC

Dewangan, B.P. , Gupta, A. , Sah, R.K. , Das, S. , Kumar, S. , Bhattacharjee, S. and Pawar, P.A. (2023) Xylobiose treatment triggers a defense‐related response and alters cell wall composition. Plant Mol. Biol. 113, 383–400. PubMed

Donaldson, L.A. (1992) Lignin distribution during late wood formation in Pinus radiata D. Don. IAWA Bulletin 13, 381–387.

Donev, E. , Gandla, M.L. , Jönsson, L.J. and Mellerowicz, E.J. (2018) Engineering non‐cellulosic polysaccharides of wood for the biorefinery. Front. Plant Sci. 9, 1537. PubMed PMC

Escalante, A. , Gonçalves, A. , Bodin, A. , Stepan, A. , Sandström, C. , Toriz, G. and Gatenholm, P. (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr. Polym. 87, 2381–2387.

Faria‐Blanc, N. , Mortimer, J.C. and Dupree, P. (2018) A transcriptomic analysis of xylan mutants does not support the existence of a secondary cell wall integrity system in Arabidopsis . Front. Plant Sci. 9, 384. PubMed PMC

Gandla, L.M. , Derba‐Maceluch, M. , Liu, X. , Gerber, L. , Master, E.R. , Mellerowicz, E.J. and Jönsson, L.J. (2015) Expression of a fungal glucuronoyl esterase in Populus: effects on wood properties and saccharification efficiency. Phytochemistry 112, 210–220. PubMed

Gandla, M.L. , Mähler, N. , Escamez, S. , Skotare, T. , Obudulu, O. , Möller, L. , Abreu, I.N. et al. (2021) Overexpression of vesicle‐associated membrane protein PttVAP27‐17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. Biotechnol. Biofuels 14, 43. PubMed PMC

Garapati, P. , Xue, G.P. , Munné‐Bosch, S. and Balazadeh, S. (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol. 168, 1122–1139. PubMed PMC

Gerber, L. , Eliasson, M. , Trygg, J. , Moritz, T. and Sundberg, B. (2012) Multivariate curve resolution provides a high‐throughput data processing pipeline for pyrolysis‐gas chromatography/mass spectrometry. J. Anal. Appl.Pyrolysis 95, 95–100.

Grantham, N.J. , Wurman‐Rodrich, J. , Terrett, O.M. , Lyczakowski, J.J. , Stott, K. , Iuga, D. , Simmons, T.J. et al. (2017) An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat. Plants 3, 859–865. PubMed

Gui, J. , Luo, L. , Zhong, Y. , Sun, J. , Umezawa, T. and Li, L. (2019) Phosphorylation of LTF1, an MYB transcription factor in Populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Mol. Plant 12, 1325–1337. PubMed

Gupta, M. , Rawal, T.B. , Dupree, P. , Smith, J.C. and Petridis, L. (2021) Spontaneous rearrangement of acetylated xylan on hydrophilic cellulose surfaces. Cellulose 28, 3327–3345.

Haas, A.S. , Shi, D. and Greb, T. (2022) Cell fate decisions within the vascular cambium–initiating wood and bast formation. Front. Plant Sci. 13, 864422. PubMed PMC

Hao, Z. , Avci, U. , Tan, L. , Zhu, X. , Glushka, J. , Pattathil, S. , Eberhard, S. et al. (2014) Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Front. Plant Sci. 5, 357. PubMed PMC

Hartley, R.D. , Morrison, W.H. , Himmelsbach, D.S. and Borneman, W.S. (1990) Cross‐linking of cell wall phenolic arabinoxylans in graminaceous plants. Phytochemistry 29, 3705–3709.

Hernández‐Blanco, C. , Feng, D.X. , Hu, J. , Sánchez‐Vallet, A. , Deslandes, L. , Llorente, F. , Berrocal‐Lobo, M. et al. (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19, 890–903. PubMed PMC

Hoang, N.V. , Choe, G. , Zheng, Y. , Aliaga Fandino, A.C. , Sung, I. , Hur, J. , Kamran, M. et al. (2020) Identification of conserved gene‐regulatory networks that integrate environmental sensing and growth in the root cambium. Curr. Biol. 30, 2887–2900.e7. PubMed

Immanen, J. , Nieminen, K. , Smolander, O.‐P. , Kojima, M. , Alonso Serra, J. , Koskinen, P. , Zhang, J. et al. (2016) Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Curr. Biol. 26, 1990–1997. PubMed

Jones, L. , Ennos, A.R. and Turner, S.R. (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin‐deficient mutant of Arabidopsis . Plant J. 26, 205–216. PubMed

Kaida, R. , Kaku, T. , Baba, K. , Oyadomari, M. , Watanabe, T. , Nishida, K. , Kanaya, T. et al. (2009) Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood. Mol. Plant 2, 904–909. PubMed

Karady, M. , Hladík, P. , Cermanová, K. , Jiroutová, P. , Antoniadi, I. , Casanova‐Sáez, R. , Ljung, K. et al. (2024) Profiling of 1‐aminocyclopropane‐1‐carboxylic acid and selected phytohormones in Arabidopsis using liquid chromatography‐tandem mass spectrometry. Plant Methods 20, 41. PubMed PMC

Karimi, M. , Inzé, D. and Depicker, A. (2002) GATEWAY vectors for Agrobacterium‐mediated plant transformation. Trends Plant Sci. 7, 193–195. PubMed

Keegan, D. , Kretschmer, B. , Elbersen, B. and Panoutsou, C. (2013) Cascading use: a systematic approach to biomass beyond the energy sector. Biofuels Bioprod. Biorefin. 7, 193–206.

Kim, J.H. , Nguyen, N.H. , Jeong, C.Y. , Nguyen, N.T. , Hong, S.W. and Lee, H. (2013) Loss of the R2R3 MYB, AtMYB73, causes hyper‐induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. J. Plant Physiol. 170, 1461–1465. PubMed

Kitin, P. , Nakaba, S. , Hunt, C.G. , Lim, S. and Funada, R. (2020) Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AoB Plants 12, plaa032. PubMed PMC

Kojima, K. , Sunagawa, N. , Yoshimi, Y. , Tryfona, T. , Samejima, M. , Dupree, P. and Igarashi, K. (2022) Acetylated xylan degradation by glycoside hydrolase family 10 and 11 xylanases from the white‐rot fungus Phanerochaete chrysosporium . J. Appl. Glycosci. 69, 35–43. PubMed PMC

Kolenová, K. , Vrsanská, M. and Biely, P. (2006) Mode of action of endo‐beta‐1,4‐xylanases of families 10 and 11 on acidic xylooligosaccharides. J. Biotechnol. 121, 338–345. PubMed

Kumar, V. , Hainaut, M. , Delhomme, N. , Mannapperuma, C. , Immerzeel, P. , Street, N.R. , Henrissat, B. et al. (2019) Poplar carbohydrate‐active enzymes: whole‐genome annotation and functional analyses based on RNA expression data. Plant J. 99, 589–609. PubMed PMC

Lee, C. , Teng, Q. , Huang, W. , Zhong, R. and Ye, Z.‐H. (2009) Down‐regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol. 50, 1075–1089. PubMed

Lee, C. , Teng, Q. , Zhong, R. and Ye, Z.‐H. (2011) Molecular dissection of xylan biosynthesis during wood formation in poplar. Mol. Plant 4, 730–747. PubMed

Li, Q. , Lin, Y.C. , Sun, Y.H. , Song, J. , Chen, H. , Zhang, X.H. , Sederoff, R.R. et al. (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa . Proc. Natl. Acad. Sci. USA 109, 14699–14704. PubMed PMC

Li, Q. , Min, D. , Wang, J.P. , Peszlen, I. , Horvath, L. , Horvath, B. , Nishimura, Y. et al. (2011) Down‐regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol. 31, 226–236. PubMed

Liu, C. , Yu, H. , Rao, X. , Li, L. and Dixon, R.A. (2021) Abscisic acid regulates secondary cell‐wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. Proc. Natl. Acad. Sci. USA 118, e2010911118. PubMed PMC

Maris, A. , Kaewthai, N. , Eklöf, J.M. , Miller, J.G. , Brumer, H. , Fry, S.C. , Verbelen, J.P. et al. (2011) Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana . J. Exp. Bot. 62, 261–271. PubMed

Markwalder, H.U. and Neukom, H. (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15, 836–837.

Martínez‐Abad, A. , Giummarella, N. , Lawoko, M. and Vilaplana, F. (2018) Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chem. 20, 2534–2546.

McKee, L.S. , Sunner, H. , Anasontzis, G.E. , Toriz, G. , Gatenholm, P. , Bulone, V. , Vilaplana, F. et al. (2016) A GH115 α‐glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnol. Biofuels 9, 2. PubMed PMC

Mertz, R.A. , Olek, A.T. and Carpita, N.C. (2012) Alterations in cell‐wall glycosyl linkage structure of Arabidopsis murus mutants. Carbohydr. Polym. 89, 331–339. PubMed

Mischnick, P. (2012) Mass spectrometric characterization of oligo‐ and polysaccharides and their derivatives. In Advances in Polymer Science, Vol. 248 ( Hakkarainen, M. , ed), pp. 105–174. Berlin, Heidelberg: Springer.

Mori, K. , Renhu, N. , Naito, M. , Nakamura, A. , Shiba, H. , Yamamoto, T. , Suzaki, T. et al. (2018) Ca(2+)‐permeable mechanosensitive channels MCA1 and MCA2 mediate cold‐induced cytosolic Ca(2+) increase and cold tolerance in Arabidopsis . Sci. Rep. 8, 550. PubMed PMC

Murthy, S.E. , Dubin, A.E. , Whitwam, T. , Jojoa‐Cruz, S. , Cahalan, S.M. , Mousavi, S.A.R. , Ward, A.B. et al. (2018) OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. elife 7, e41844. PubMed PMC

Ohtani, M. , Nishikubo, N. , Xu, B. , Yamaguchi, M. , Mitsuda, N. , Goué, N. , Shi, F. et al. (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J. 67, 499–512. PubMed

Papdi, C. , ÁbrahÁm, E. , Joseph, M.P. , Popescu, C. , Koncz, C. and Szabados, L.S. (2008) Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol. 147, 528–542. PubMed PMC

Pauly, M. and Keegstra, K. (2008) Cell‐wall carbohydrates and their modification as a resource for biofuels. Plant J. 54, 559–568. PubMed

Pauly, M. and Keegstra, K. (2010) Plant cell wall polymers as precursors for biofuels. Curr. Opin. Plant Biol. 13, 305–312. PubMed

Pawar, P.M. , Derba‐Maceluch, M. , Chong, S.L. , Gómez, L.D. , Miedes, E. , Banasiak, A. , Ratke, C. et al. (2016) Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose. Plant Biotechnol. J. 14, 387–397. PubMed PMC

Pawar, P.M.‐A. , Derba‐Maceluch, M. , Chong, S.‐L. , Gandla, M.L. , Bashar, S.S. , Sparrman, T. , Ahvenainen, P. et al. (2017) In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood. Biotechnol. Biofuels 10, 98. PubMed PMC

Pell, G. , Taylor, E.J. , Gloster, T.M. , Turkenburg, J.P. , Fontes, C.M. , Ferreira, L.M. , Nagy, T. et al. (2004) The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279, 9597–9605. PubMed

Persson, S. , Caffall, K.H. , Freshour, G. , Hilley, M.T. , Bauer, S. , Poindexter, P. , Hahn, M.G. et al. (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19, 237–255. PubMed PMC

Petersen, P.D. , Lau, J. , Ebert, B. , Yang, F. , Verhertbruggen, Y. , Kim, J.S. , Varanasi, P. et al. (2012) Engineering of plants with improved properties as biofuels feedstocks by vessel‐specific complementation of xylan biosynthesis mutants. Biotechnol. Biofuels 5, 84. PubMed PMC

Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real‐time RT‐PCR. Nucleic Acids Res. 29, e45. PubMed PMC

Pogorelko, G. , Fursova, O. , Lin, M. , Pyle, E. , Jass, J. and Zabotina, O.A. (2011) Post‐synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast. Plant Mol. Biol. 77, 433–445. PubMed

Pollet, A. , Delcour, J.A. and Courtin, C.M. (2010) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit. Rev. Biotechnol. 30, 176–191. PubMed

Potikha, T. and Delmer, D.P. (1995) A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J. 7, 453–460.

Pramod, S. , Patel, V.R. , Rajput, K.S. and Rao, K.S. (2014) Distribution of tension wood like gelatinous fibres in the roots of Acacia nilotica (Lam.) willd. Planta 240, 1191–1202. PubMed

Pramod, S. , Gandla, M.L. , Derba‐Maceluch, M. , Jönsson, L.J. , Mellerowicz, E.J. and Winestrand, S. (2021) Saccharification potential of transgenic greenhouse‐ and field‐grown aspen engineered for reduced xylan acetylation. Front. Plant Sci. 12, 704960. PubMed PMC

Ralph, J. , Grabber, J.H. and Hatfield, R.D. (1995) Lignin‐ferulate cross‐links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr. Res. 275, 167–178.

Ramírez, V. and Pauly, M. (2019) Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis. Plant Direct 3, e00149. PubMed PMC

Ratke, C. , Pawar, P.M. , Balasubramanian, V.K. , Naumann, M. , Duncranz, M.L. , Derba‐Maceluch, M. , Gorzsás, A. et al. (2015) Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. Plant Biotechnol. J. 13, 26–37. PubMed

Ratke, C. , Terebieniec, B.K. , Winestrand, S. , Derba‐Maceluch, M. , Grahn, T. , Schiffthaler, B. , Ulvcrona, T. et al. (2018) Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome. New Phytol. 219, 230–245. PubMed

Reilly, P.J. (1981) Xylanases: structure and function. Basic Life Sci. 18, 111–129. PubMed

Richmond, B.L. , Coelho, C.L. , Wilkinson, H. , McKenna, J. , Ratchinski, P. , Schwarze, M. , Frost, M. et al. (2022) Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana . Physiol. Plant. 174, e13681. PubMed PMC

Rivero, R.M. , Mittler, R. , Blumwald, E. and Zandalinas, S.I. (2022) Developing climate‐resilient crops: improving plant tolerance to stress combination. Plant J. 109, 373–389. PubMed

Romano, J.M. , Dubos, C. , Prouse, M.B. , Wilkins, O. , Hong, H. , Poole, M. , Kang, K.‐Y. et al. (2012) AtMYB61, an R2R3‐MYB transcription factor, functions as a pleiotropic regulator via a small gene network. New Phytol. 195, 774–786. PubMed

Rudsander, U.J. , Denman, S. , Raza, S. and Teeri, T.T. (2003) Molecular features of family GH9 cellulases in hybrid aspen and the filamentous fungus Phanerochaete chrysosporium . J. Appl. Glycosci. 50, 253–256.

Ruel, K. , Chevalier‐billosta, V. , Guillemin, F. , Sierra, J.B. and Joseleau, J.‐P. (2006) The wood cell wall at the ultrastructural scale – formation and topochemical organization. Maderas Cienc.Tecnol. 8, 107–116.

Saeman, J.F. , Moore, W.E. , Mitchell, R.L. and Millett, M.A. (1954) Technique for the determination of pulp constituents by quantitative paper chromatography. TAPPI J. 37, 336–343.

Sapouna, I. , Kärkönen, A. and McKee, L.S. (2023) The impact of xylan on the biosynthesis and structure of extracellular lignin produced by a Norway spruce tissue culture. Plant Direct 7, e500. PubMed PMC

Schuetz, M. , Smith, R. and Ellis, B. (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J. Exp. Bot. 64, 11–31. PubMed

Simmons, T.J. , Mortimer, J.C. , Bernardinelli, O.D. , Pöppler, A.‐C. , Brown, S.P. , deAzevedo, E.R. , Dupree, R. et al. (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid‐state NMR. Nat. Commun. 7, 13902. PubMed PMC

Simura, J. , Antoniadi, I. , Siroka, J. , Tarkowska, D. , Strnad, M. , Ljung, K. and Novak, O. (2018) Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 177, 476–489. PubMed PMC

Sivan, P. , Heinonen, E. , Escudero, L. , Gandla, M.L. , Jiménez‐Quero, A. , Jönsson, L.J. , Mellerowicz, E.J. et al. (2024) Unraveling the unique structural motifs of glucuronoxylan from hybrid aspen wood. Carbohydr. Polym. 343, 122434. PubMed

Sivan, P. , Heinonen, E. , Latha Gandla, M. , Jiménez‐Quero, A. , Özeren, H.D. , Jönsson, L.J. , Mellerowicz, E.J. et al. (2023) Sequential extraction of hemicelluloses by subcritical water improves saccharification of hybrid aspen wood grown in greenhouse and field conditions. Green Chem. 25, 5634–5646.

Somerville, C.R. and Bonetta, D. (2001) Plants as factories for technical materials. Plant Physiol. 125, 168–171. PubMed PMC

Sundell, D. , Mannapperuma, C. , Netotea, S. , Delhomme, N. , Lin, Y.C. , Sjödin, A. , Van de Peer, Y. et al. (2015) The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 208, 1149–1156. PubMed

Sundell, D. , Street, N.R. , Kumar, M. , Mellerowicz, E.J. , Kucukoglu, M. , Johnsson, C. , Kumar, V. et al. (2017) AspWood: high‐spatial‐resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula . Plant Cell 29, 1585–1604. PubMed PMC

Takata, N. , Awano, T. , Nakata, M.T. , Sano, Y. , Sakamoto, S. , Mitsuda, N. and Taniguchi, T. (2019) Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiol. 39, 514–525. PubMed

Taylor‐Teeples, M. , Lin, L. , de Lucas, M. , Turco, G. , Toal, T.W. , Gaudinier, A. , Young, N.F. et al. (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571–575. PubMed PMC

Teh, O.K. and Moore, I. (2007) An ARF‐GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448, 493–496. PubMed

Timell, T.E. (1961) Isolation of galactoglucomannans from the wood of gymnosperms. Tappi 44, 88–96.

Tipper, E. , Leitão, N. , Dangeville, P. , Lawson, D.M. and Charpentier, M. (2023) A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem. J. Exp. Bot. 74, 2572–2584. PubMed PMC

Turner, S.R. and Somerville, C.R. (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689–701. PubMed PMC

Turner, S.R. , Taylor, N. and Jones, L. (2001) Mutations of the secondary cell wall. Plant Mol. Biol. 47, 209–219. PubMed

Urbancsok, J. , Donev, E.N. , Sivan, P. , van Zalen, E. , Barbut, F.R. , Derba‐Maceluch, M. , Šimura, J. et al. (2023) Flexure wood formation via growth reprogramming in hybrid aspen involves jasmonates and polyamines and transcriptional changes resembling tension wood development. New Phytol. 240, 2312–2334. PubMed

Van Norman, J.M. and Sieburth, L.E. (2007) Dissecting the biosynthetic pathway for the bypass1 root‐derived signal. Plant J. 49, 619–628. PubMed

Vandesompele, J. , De Preter, K. , Pattyn, F. , Poppe, B. , Van Roy, N. , De Paepe, A. et al. (2002) Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 34. PubMed PMC

Vardakou, M. , Dumon, C. , Murray, J.W. , Christakopoulos, P. , Weiner, D.P. , Juge, N. , Lewis, R.J. et al. (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J. Mol. Biol. 375, 1293–1305. PubMed

Wang, Z. , Winestrand, S. , Gillgren, T. and Jönsson, L.J. (2018) Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass Bioenergy 109, 125–134.

Wang, Z. , Mao, Y. , Guo, Y. , Gao, J. , Liu, X. , Li, S. , Lin, Y.J. et al. (2020a) MYB transcription factor161 mediates feedback regulation of secondary wall‐associated NAC‐domain family genes for wood formation. Plant Physiol. 184, 1389–1406. PubMed PMC

Wang, L. , Wang, B. , Yu, H. , Guo, H. , Lin, T. , Kou, L. , Wang, A. et al. (2020b) Transcriptional regulation of strigolactone signalling in Arabidopsis . Nature 583, 277–281. PubMed

Wang, X. , Niu, Y. and Zheng, Y. (2021) Multiple functions of MYB transcription factors in abiotic stress responses. Int. J. Mol. Sci. 22, 6125. PubMed PMC

Wang, W. , Talide, L. , Viljamaa, S. and Niittylä, T. (2022) Aspen growth is not limited by starch reserves. Curr. Biol. 32, 3619–3627. PubMed

Wenkel, S. , Emery, J. , Hou, B.H. , Evans, M.M. and Barton, M.K. (2007) A feedback regulatory module formed by LITTLE ZIPPER and HD‐ZIPIII genes. Plant Cell 19, 3379–3390. PubMed PMC

Windram, O. , Madhou, P. , McHattie, S. , Hill, C. , Hickman, R. , Cooke, E. , Jenkins, D.J. et al. (2012) Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high‐resolution temporal transcriptomic analysis. Plant Cell 24, 3530–3557. PubMed PMC

Wu, F. , Chi, Y. , Jiang, Z. , Xu, Y. , Xie, L. , Huang, F. , Wan, D. et al. (2020) Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis . Nature 578, 577–581. PubMed

Yang, Y. , Tang, R.J. , Li, B. , Wang, H.H. , Jin, Y.L. , Jiang, C.M. , Bao, Y. et al. (2015) Overexpression of a Populus trichocarpa H+‐pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar. Tree Physiol. 35, 663–677. PubMed

Yuan, F. , Yang, H. , Xue, Y. , Kong, D. , Ye, R. , Li, C. , Zhang, J. et al. (2014) OSCA1 mediates osmotic‐stress‐evoked Ca2+ increases vital for osmosensing in Arabidopsis . Nature 514, 367–371. PubMed

Yuan, Y. , Teng, Q. , Zhong, R. , Haghighat, M. , Richardson, E.A. and Ye, Z.H. (2016a) Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition. PLoS One 11, e0146460. PubMed PMC

Yuan, Y. , Teng, Q. , Zhong, R. and Ye, Z.H. (2016b) TBL3 and TBL31, Two Arabidopsis DUF231 domain proteins, are required for 3‐o‐monoacetylation of xylan. Plant Cell Physiol. 57, 35–45. PubMed

Yuan, Y. , Teng, Q. , Zhong, R. and Ye, Z.H. (2016c) Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Sci. 243, 120–130. PubMed

Zhang, X. , Gou, M. and Liu, C.J. (2013) Arabidopsis Kelch repeat F‐box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia‐lyase. Plant Cell 25, 4994–5010. PubMed PMC

Zhao, Y. , Song, D. , Sun, J. and Li, L. (2013) Populus endo‐beta‐mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. Plant J. 74, 473–485. PubMed

Zheng, K. , Wang, X. , Weighill, D.A. , Guo, H.B. , Xie, M. , Yang, Y. , Yang, J. et al. (2016) Characterization of DWARF14 genes in Populus . Sci. Rep. 6, 21593. PubMed PMC

Zhong, R. , Peña, M.J. , Zhou, G.K. , Nairn, C.J. , Wood‐Jones, A. , Richardson, E.A. , Morrison, W.H., 3rd et al. (2005) Arabidopsis FRAGILE FIBER8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17, 3390–3408. PubMed PMC

Zhong, R. , Lee, C. , Zhou, J. , McCarthy, R.L. and Ye, Z.‐H. (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis . Plant Cell 20, 2763–2782. PubMed PMC

Zhong, R. , Lee, C. and Ye, Z.H. (2010) Functional characterization of poplar wood‐associated NAC domain transcription factors. Plant Physiol. 152, 1044–1055. PubMed PMC

Zhong, R. , McCarthy, R.L. , Lee, C. and Ye, Z.H. (2011) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol. 157, 1452–1468. PubMed PMC

Zhu, L. , Zhang, X.Q. , Ye, D. and Chen, L.Q. (2021) The MILDEW RESISTANCE LOCUS O 4 interacts with CaM/CML and is involved in root gravity response. Int. J. Mol. Sci. 22, 5962. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...