Is rat liver affected by non-alcoholic steatosis more susceptible to the acute toxic effect of thioacetamide?

. 2011 Aug ; 92 (4) : 281-9. [epub] 20110317

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21410800

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic condition of the liver in the western world. There is only little evidence about altered sensitivity of steatotic liver to acute toxic injury. The aim of this project was to test whether hepatic steatosis sensitizes rat liver to acute toxic injury induced by thioacetamide (TAA). Male Sprague-Dawley rats were fed ad libitum a standard pelleted diet (ST-1, 10% energy fat) and high-fat gelled diet (HFGD, 71% energy fat) for 6 weeks and then TAA was applied intraperitoneally in one dose of 100 mg/kg. Animals were sacrificed in 24-, 48- and 72-h interval after TAA administration. We assessed the serum biochemistry, the hepatic reduced glutathione, thiobarbituric acid reactive substances, cytokine concentration, the respiration of isolated liver mitochondria and histopathological samples (H+E, Sudan III, bromodeoxyuridine [BrdU] incorporation). Activities of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase and concentration of serum bilirubin were significantly higher in HFGD groups after application of TAA, compared to ST-1. There were no differences in activities of respiratory complexes I and II. Serum tumour necrosis factor alpha at 24 and 48 h, liver tissue interleukin-6 at 72 h and transforming growth factor β1 at 24 and 48 h were elevated in TAA-administrated rats fed with HFGD, but not ST-1. TAA-induced centrilobular necrosis and subsequent regenerative response of the liver were higher in HFGD-fed rats in comparison with ST-1. Liver affected by NAFLD, compared to non-steatotic liver, is more sensitive to toxic effect of TAA.

Zobrazit více v PubMed

Apte UM, Limaye PB, Ramaiah SK, et al. Upregulated promitogenic signaling via cytokines and growth factors: potential mechanism of robust liver tissue repair in calorie-restricted rats upon toxic challenge. Toxicol. Sci. 2002;69:448–459. PubMed

Avni Y, Shirin H, Aeed H, Shahmurov M, Birkenfeld S, Bruck R. Thioacetamide-induced hepatic damage in a rat nutritional model of steatohepatitis. Hepatol. Res. 2004;30:141–147. PubMed

Bélanger M, Butterworth RF. Acute liver failure: a critical appraisal of available animal models. Metab. Brain Dis. 2005;20:409–423. PubMed

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. PubMed

Bustamante E, Soper JW, Pedersen PL. A high-yield preparative method for isolation of rat liver mitochondria. Anal. Biochem. 1977;80:401–408. PubMed

Caballero ME, Berlanga J, Ramirez D, et al. Epidermal growth factor reduces multiorgan failure induced by thioacetamide. Gut. 2001;48:34–40. PubMed PMC

Červinková Z, Drahota Z. Enteral administration of lipid emulsions protects liver cytochrome c oxidase from hepatotoxic action of thioacetamide. Physiol. Res. 1998;47:151–154. PubMed

Červinková Z, Rauchová H, Křiváková P, Drahota Z. Inhibition of palmityl carnitine oxidation in rat liver mitochondria by tert-butyl hydroperoxide. Physiol. Res. 2008;2008:133–136. PubMed

Chen TM, Subeq YM, Lee RP, Chiou TW, Hsu BG. Single dose intravenous thioacetamide administration as a model of acute liver damage in rats. Int. J. Exp. Pathol. 2008;89:223–231. PubMed PMC

Chilakapati J, Shankar K, Korrapati MC, Hill RA, Mehendale HM. Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab. Dispos. 2005;33:1877–1885. PubMed

Chilakapati J, Korrapati MC, Hill RA, Warbritton A, Latendresse JR, Mehendale HM. Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide. Toxicology. 2007;230:105–116. PubMed

Chitturi S, Abeygunasekera S, Farrell GC, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002;35:373–379. PubMed

Drahota Z, Křiváková P, Červinková Z, et al. Tert-butyl hydroperoxide selectively inhibits mitochondrial respiratory-chain enzymes in isolated rat hepatocytes. Physiol. Res. 2005;54:67–72. PubMed

Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–S53. PubMed

Gambino R, Musso G, Cassader M. Redox balance in the pathogenesis of non-alcoholic fatty liver disease: mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2010 doi: 10.1089/ars.2009.3058. PubMed DOI

Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976;74:214–226. PubMed

Kand’ár R, Žáková P, Lotková H, Kučera O, Červinková Z. Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection. J. Pharm. Biomed. Anal. 2007;43:1382–1387. PubMed

Kanzler S, Lohse AW, Keil A, et al. TGF-beta1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am. J. Physiol. 1999;276:G1059–G1068. PubMed

Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J. Hepatol. 1999;30:48–60. PubMed

Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology. 2000;31:149–159. PubMed

Kučera O, Garnol T, Lotková H, et al. The effect of rat strain, diet composition and feeding period on the development of a nutritional model of non-alcoholic fatty liver disease in rats. Physiol. Res. 2011 ( http://www.biomed.cas.cz/physiolres/pdf/prepress/932022.pdf) PubMed

Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis. Am. J. Clin. Nutr. 2004;79:502–509. PubMed

Lotková H, Červinková Z, Kučera O, Roušar T, Křiváková P. S-adenosylmethionine exerts a protective effect against thioacetamide-induced injury in primary cultures of rat hepatocytes. Altern. Lab. Anim. 2007;35:363–371. PubMed

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. PubMed

Mangipudy RS, Chanda S, Mehendale HM. Tissue repair response as a function of dose in thioacetamide hepatotoxicity. Environ. Health Perspect. 1995;103:260–267. PubMed PMC

Natarajan SK, Thomas S, Ramamoorthy P, et al. Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models. J. Gastroenterol. Hepatol. 2006;21:947–957. PubMed

Okhawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. PubMed

Okuyama H, Nakamura H, Shimahara Y, et al. Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology. 2003;37:1015–1025. PubMed

Pallottini V, Martini C, Bassi AM, et al. Rat HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased reactive oxygen species content. J. Hepatol. 2006;44:368–374. PubMed

Plumpe J, Malek NP, Bock CT, Rakemann T, Manns MP, Trautwein C. NF-kB determines between apoptosis and proliferation in hepatocytes during liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;278:G173–G183. PubMed

Rahman TM, Hodgson HJ. Animal models of acute hepatic failure. Int. J. Exp. Pathol. 2000;81:145–157. PubMed PMC

Sanz N, Díez-Fernández C, Andrés D, Cascales M. Hepatotoxicity and aging: endogenous antioxidant systems in hepatocytes from 2-, 6-, 12-, 18- and 30-month-old rats following a necrogenic dose of thioacetamide. Biochim. Biophys. Acta. 2002;1587:12–20. PubMed

Shankar K, Vaidya VS, Wang T, Bucci TJ, Mehendale HM. Streptozotocin-induced diabetic mice are resistant to lethal effects of thioacetamide hepatotoxicity. Toxicol. Appl. Pharmacol. 2003;188:122–134. PubMed

Shapiro H, Ashkenazi M, Weizman N, Shahmurov M, Aeed H, Bruck R. Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J. Gastroenterol. Hepatol. 2006;21:358–366. PubMed

Staňková P, Kučera O, Lotková H, Roušar T, Endlicher R, Červinková Z. The toxic effect of thioacetamide on rat liver in vitro. Toxicol. In Vitro. 2010;24:2097–3103. PubMed

Svátková R, Červinková Z, Kalous M, Rauchová H, Drahota Z. Respiratory control index of mitochondria isolated from regenerating rat liver. Physiol. Res. 1996;45:249–252. PubMed

Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance. World J. Gastroenterol. 2010;16:4773–4783. PubMed PMC

Vendemiale G, Grattagliano I, Caraceni P, et al. Mitochondrial oxidative injury and energy metabolism alteration in rat fatty liver: effect of the nutritional status. Hepatology. 2001;33:808–815. PubMed

Videla LA, Rodrigo R, Orellana M, et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. (Lond). 2004;106:261–268. PubMed

Wang T, Fontenot RD, Soni MG, Bucci TJ, Mehendale HM. Enhanced hepatotoxicity and toxic outcome of thioacetamide in streptozotocin-induced diabetic rats. Toxicol. Appl. Pharmacol. 2000;166:92–100. PubMed

Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J. Nutr. 2004;134:489–492. PubMed

Zou Y, Li J, Lu C, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79:1100–1107. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...