Safe decontamination of cytostatics from the nitrogen mustards family. Part one: cyclophosphamide and ifosfamide
Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30538471
PubMed Central
PMC6263216
DOI
10.2147/ijn.s159328
PII: ijn-13-7971
Knihovny.cz E-zdroje
- Klíčová slova
- cyclophosphamide, decontamination agents, degradation, ifosfamide, ifosfamide mustard, titanium(IV) dioxide,
- MeSH
- alkylační protinádorové látky chemie metabolismus MeSH
- cyklofosfamid chemie metabolismus MeSH
- cytostatické látky chemie metabolismus MeSH
- dekontaminace metody MeSH
- ifosfamid chemie metabolismus MeSH
- lidé MeSH
- nanočástice chemie MeSH
- titan chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkylační protinádorové látky MeSH
- cyklofosfamid MeSH
- cytostatické látky MeSH
- ifosfamid MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
INTRODUCTION: Macrocrystalline oxides of alkaline earth metals (Mg and Ca) or light metals (Al and Ti) can respond to standard warfare agents such as sulfur mustard, soman, or agent VX. In this paper, we compared the decontamination ability of sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) for nitrogen mustards (cyclophosphamide [CP] and ifosfamide [IFOS]) with a new procedure using a destructive sorbent based on nanocrystalline and nanodispersive titanium dioxide (TiO2) as a new efficient and cheap material for complete decontamination of surfaces. METHODS: Titanium (IV) dioxide nanoparticles were prepared by the homogeneous hydrolysis of titanium(IV) oxysulfate (TiOSO4) with urea. The as-prepared TiO2 nanoparticles were used for the fast and safe decontamination of cytostatics from the nitrogen mustard family (CP and IFOS) in water. The adsorption-degradation process of cytostatics in the presence of TiO2 was compared with decontamination agents (0.01 M solution of sodium hydroxide and 5% solution of sodium hypochlorite). The mechanism of the decontamination process and the degradation efficiency were determined by high-performance liquid chromatography with mass spectrometry. RESULTS: It was demonstrated that a 0.01 M solution of sodium hydroxide (NaOH) decomposes CP to 3-((amino(bis(2-chloroethyl)amino)phosphoryl)oxy)propanoic acid and sodium hypochlorite formed two reaction products, namely, IFOS and 4-hydroxy-cyclophosphamide. IFOS is cytotoxic, and 4-hydroxy-cyclophosphamide is a known metabolite of CP after its partial metabolism by CYP/CYP450. IFOS degrades in the pres¬ence of NaOH to toxic IFOS mustard. Titanium(IV) dioxide nanoparticles adsorbed on its surface CP after 5 minutes and on IFOS after 10 minutes. The adsorption-degradation process of CP in water and in the presence of TiO2 led to 4-hydroxy-cyclophosphamide and IFOS, respectively, which decayed to oxidation product 4-hydroxy-ifosfamide. CONCLUSION: Nanodispersive TiO2 is an effective degradation agent for decontamination of surfaces from cytostatics in medical facilities.
Department of Material Chemistry Institute of Inorganic Chemistry ASCR v v i Řež Czech Republic
Faculty of Environment J E Purkyně University in Ústí nad Labem Ústí nad labem Czech Republic
Zobrazit více v PubMed
Wagner GW, Bartram PW, Vx KKJ. GD and HD reactions with nanosize particles. Abstracts of Papers of the American Chemical Society. 1999;217:3225–3228.
Stengl V, Henych J, Janos P, Skoumal M. Nanostructured metal oxides for stoichiometric degradation of chemical warfare agents. In: DeVoogt P, editor. Reviews of Environmental Contamination and Toxicology. Vol. 236. Berlin: Springer; 2016. pp. 239–258. PubMed
Gilman A. The initial clinical trial of nitrogen mustard. Am J Surg. 1963;105(5):574–578. PubMed
Hirsch J. An anniversary for cancer chemotherapy. JAMA. 2006;296(12):1518–1520. PubMed
Stenglova Netikova IR, Slusna M, Tolasz J, St’astny M, Popelka S, Stengl V. A new possible way of anthracycline cytostatics decontamination. New J Chem. 2017;41:3975–3985.
Štengl V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol. 2005;80(7):754–758.
Štengl V, Henych J, Grygar T, Pérez R. Chemical degradation of trimethyl phosphate as surrogate for organo-phosporus pesticides on nanostructured metal oxides. Mater Res Bull. 2015;61:259–269.
Bakardjieva S, Šubrt J, Štengl V, Dianez MJ, Sayagues MJ. Photo-activity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B. 2005;58(3–4):193–202.
Štengl V, Bakardjieva S, Murafa N, Houšková V, Lang K. Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous and Mesoporous Materials. 2008;110(2–3):370–378.
Štengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys. 2009;114(1):217–226.
Stengl V, Grygar TM, Opluštil F, Němec T. Ge4+ doped TiO2 for stoichiometric degradation of warfare agents. J Hazard Mater. 2012:227–228. 62–67. PubMed
Henych J, Štengl V, Slušná M, et al. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides. Appl Surf Sci. 2015;344:9–16.
Santana-Viera S, Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez JJ, Kabir A, Furton KG. Optimization and application of fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry for the determination of cytostatic drug residues in environmental waters. J Chromatogr A. 2017;1529:39–49. PubMed
Baumann F, Preiss R. Cyclophosphamide and related anticancer drugs. J Chromatogr B Biomed Sci Appl. 2001;764(1–2):173–192. PubMed
Trissel LA. The Handbook on Injectable Drugs: Single User Version. Bethesda, MD: American Society of Health-System Pharmacists; 2011.
Janos P, Kuran P, Kormunda M, et al. Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. J Rare Earths. 2014;32(4):360–370.
Šťastný M, Štengl V, Henych J, Tolasz J, Vomáčka P, Ederer J. Mesoporous manganese oxide for the degradation of organophosphates pesticides. J Mater Sci. 2016;51(5):2634–2642.
Matyjaszewski K. Inner sphere and outer sphere electron transfer reactions in atom transfer radical polymerization. Macromol Symp. 1998;134(1):105–118.
Jeon J, Goddard WA, Kim H. Inner-sphere electron-transfer single iodide mechanism for dye regeneration in dye-sensitized solar cells. J Am Chem Soc. 2013;135(7):2431–2434. PubMed
Maier WF. Transition Metal Oxides: Surface Chemistry and Catalysis. (Reihe: Studies in Surface Science and Catalysis, Vol. 45). Von H. H. Kung. Elsevier, Amsterdam 1989. X, 282 S., geb. HFl. 215.00. – ISBN 0-444-87394-5. Angew Chem Int Ed Engl. 1990;102(8):965–966.
Gq L, Linsebigler A, Yates JT. Ti3+ Defect Sites on TiO2 (110) – Production and Chemical Detection of Aactive Sites. J Phys Chem. 1994;98(45):11733–11738.
Nicolao P, Giometto B. Neurological toxicity of ifosfamide. Oncology. 2003;65(Suppl 2):11–16. PubMed
Kaijser GP, Beijnen JH, Rozendom E, Bult A, Underberg WJ. Analysis of ifosforamide mustard, the active metabolite of ifosfamide, in plasma. J Chromatogr B Biomed Appl. 1996;686(2):249–255. PubMed
Furlanut M, Franceschi L. Pharmacology of ifosfamide. Oncology. 2003;65(Suppl 2):2–6. PubMed
Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy. 1997;17(5):S146–S154. PubMed
Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, Mclennan MT. Nitrogen-mustard therapy – use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for hodgkins-disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders (Reprinted) JAMA. 1984;251(17):2255–2261. PubMed
Henych J, Janoš P, Kormunda M, Tolasz J, Stengl V. Reactive adsorption of toxic organophosphates parathion methyl and DMMP on nanostruc tured Ti/Ce oxides and their composites. Arabian Journal of Chemistry. 2016 Jun 11; Epub.
Paci A, Martens T, Royer J. Anodic oxidation of ifosfamide and cyclophosphamide: a biomimetic metabolism model of the oxaza-phosphorinane anticancer drugs. Bioorg Med Chem Lett. 2001;11(10):1347–1349. PubMed
Wen Z, Jincheng W. Preparation and Characterization of a Cyclo-phosphamide-Core PAMAM Dendritic Montmorillonite. Silicon. 2018;10(2):483–493.
James C, Ravikumar C, Sundius T, et al. FT-Raman and FTIR spectra, normal coordinate analysis and ab initio computations of (2-methylphenoxy)acetic acid dimer. Vib Spectrosc. 2008;47(1):10–20.
Arcibar-Orozco JA, Panettieri S, Bandosz TJ. Reactive adsorption of CEES on iron oxyhydroxide/(N-)graphite oxide composites under visible light exposure. J Mater Chem A Mater. 2015;3(33):17080–17090.
Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy. 1997;17(5 Pt 2):146s–154s. PubMed
Liao L-F, Lien C-F, Shieh D-L, Chen M-T, Lin J-L. FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. J Phys Chem B. 2002;106(43):11240–11245.