Expression patterns of microRNAs associated with CML phases and their disease related targets

. 2011 Apr 18 ; 10 () : 41. [epub] 20110418

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21501493

BACKGROUND: MicroRNAs are important regulators of transcription in hematopoiesis. Their expression deregulations were described in association with pathogenesis of some hematological malignancies. This study provides integrated microRNA expression profiling at different phases of chronic myeloid leukemia (CML) with the aim to identify microRNAs associated with CML pathogenesis. The functions of in silico filtered targets are in this report annotated and discussed in relation to CML pathogenesis. RESULTS: Using microarrays we identified differential expression profiles of 49 miRNAs in CML patients at diagnosis, in hematological relapse, therapy failure, blast crisis and major molecular response. The expression deregulation of miR-150, miR-20a, miR-17, miR-19a, miR-103, miR-144, miR-155, miR-181a, miR-221 and miR-222 in CML was confirmed by real-time quantitative PCR. In silico analyses identified targeted genes of these miRNAs encoding proteins that are involved in cell cycle and growth regulation as well as several key signaling pathways such as of mitogen activated kinase-like protein (MAPK), epidermal growth factor receptor (EGFR, ERBB), transforming growth factor beta (TGFB1) and tumor protein p53 that are all related to CML. Decreased levels of miR-150 were detected in patients at diagnosis, in blast crisis and 67% of hematological relapses and showed significant negative correlation with miR-150 proved target MYB and with BCR-ABL transcript level. CONCLUSIONS: This study uncovers microRNAs that are potentially involved in CML and the annotated functions of in silico filtered targets of selected miRNAs outline mechanisms whereby microRNAs may be involved in CML pathogenesis.

Zobrazit více v PubMed

Boutla A, Delidakis C, Tabler M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nuc Ac Res. 2003;31:4973–4980. doi: 10.1093/nar/gkg707. PubMed DOI PMC

Barbee SA, Estes PS, Cziko AM, Hillebrantd J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Ceng C, Ueda R, Brand AH, Newbury SF, Wilhelm JE, Levine RB, Nakamura A, Parker R, Ramaswami M. Staufen- and FMRP containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron. 2006;52:997–1009. doi: 10.1016/j.neuron.2006.10.028. PubMed DOI PMC

Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006;125:1111–1124. doi: 10.1016/j.cell.2006.04.031. PubMed DOI

Carthew RW. RNA interference: the fragile X syndrome connection. Curr Biol. 2002;12:R852–854. doi: 10.1016/S0960-9822(02)01352-0. PubMed DOI

Epanchinstev A, Jung P, Menssen A, Hermeking H. Inducible microRNA expression by an all-in-one episomal vector system. Nuc Ac Res. p. e119. PubMed DOI PMC

Calin GA, Calin DD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. PNAS. 2002;26:15524–15529. doi: 10.1073/pnas.242606799. PubMed DOI PMC

Calin GA, Liu CG, Svignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell' Aquilla ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Groce CM. MicroRNA profiling reverses distinct signatures in B cell chronic lymphocytic leukemias. PNAS. 2004;101:11755–11760. doi: 10.1073/pnas.0404432101. PubMed DOI PMC

Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O'Brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G. Micro-RNAs exhibit high frequency genomic alterations in human cancer. PNAS. 2006;103:9136–9141. doi: 10.1073/pnas.0508889103. PubMed DOI PMC

Bueno MJ, de Castro IP, de Cedrón MG, Santos J, Calin GA, Cigudosa JC, Croce CM, Piqueras JF, Malumbres M. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13:496–506. doi: 10.1016/j.ccr.2008.04.018. PubMed DOI

Albano F, Anelli L, Zagaria A, Liso V, Rocchi M, Specchia G. MIRN199B downregulation in chronic myeloid leukaemia is associated with deletions on der(9) BJ of Haematology. 2009;144:271–273. doi: 10.1111/j.1365-2141.2008.07459.x. PubMed DOI

Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Scherr M. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007;109:4399–405. doi: 10.1182/blood-2006-09-045104. PubMed DOI

Agirre X, Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Pérez-Roger I, García-Foncillas J, Torres A, Heiniger A, Calasanz MJ, Fortes P, Román-Gómez J, Prósper F. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6:1830–1840. doi: 10.1158/1541-7786.MCR-08-0167. PubMed DOI

Enériz ESJ, Román-Gómez J, Jiménez-Velasco A, Garate L, Maritn V, Coredu L, Vilas-Zornoza A, Rodríguez-Otero P, Calasanz MJ, Pr'ésper F, Agirre X. MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABLI-mutations. Mol Cancer. 2009;8:69–72. doi: 10.1186/1476-4598-8-69. PubMed DOI PMC

Flamant S, Richie W, Guilhot J, Hols J, Bonnet ML, Chomel JC, Guilhot F, Turhan AG, Rasko JEJ. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica. 2010;95:1325–1333. doi: 10.3324/haematol.2009.020636. PubMed DOI PMC

Poláková KM, Lopotová T, Klamová H, Moravcová J. Differential expression of miRNAs during the course of chronic myeloid leukemia. Blood. 2008;112:s1082.

Barroga CF, Pham H, Kaushansky K. Thrombopoietin regulates c-Myb expression by modulating micro RNA miR-150 and high BIC/miR-155 expression. Exp Hematol. 2008;36:1585–1592. doi: 10.1016/j.exphem.2008.07.001. PubMed DOI PMC

Rulcová J, Zmeková V, Zemanová Z, Klamová H, Moravcová J. The effect of total-ABL, GUS and B2M control genes on BCR-ABL monitoring by real-time RT-PCR. Leuk Res. 2007;31:483–491. doi: 10.1016/j.leukres.2006.07.021. PubMed DOI

Polaková KM, Lopotová T, Klamová H, Moravcová J. High-resolution melt curve analysis: Initial screening for mutations in BCR-ABL kinase domain. Leuk Res. 2008;32:1236–1243. doi: 10.1016/j.leukres.2008.01.010. PubMed DOI

Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN. On the utility of pooling biological samples in microarray experiments. PNAS. 2005;102:4252–4257. doi: 10.1073/pnas.0500607102. PubMed DOI PMC

Peng X, Wood CL, Blalock EM, Chen KCh, Landfield PW, Stromberg AJ. Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinf. 2003;4:26–35. doi: 10.1186/1471-2105-4-26. PubMed DOI PMC

Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, Delabesse E, Macintyre E, Gottardi E, Saglio G, Watzinger F, Lion T, van Dongen JJ, Hokland P, Gabert J. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia. 2003;17:2474–2486. doi: 10.1038/sj.leu.2403136. PubMed DOI

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocol. 2009;4:44–57. PubMed

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:P3. doi: 10.1186/gb-2003-4-5-p3. PubMed DOI

Friedman RC, Farh KKH, Burge ChB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC

Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38:D355–D360. doi: 10.1093/nar/gkp896. PubMed DOI PMC

Chen ChZ, Li, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–86. doi: 10.1126/science.1091903. PubMed DOI

Eisendle K, Lang A, Eibl B, Nachbaur D, Glassl H, Fiegl M, Thaler J, Gastl G. Phenotypic and functional deficiencies of leukaemic dendritic cells from patients with chronic myeloid leukaemia. BJ of Haematology. 2003;120:63–73. doi: 10.1046/j.1365-2141.2003.03979.x. PubMed DOI

Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, Druker BJ, Donato JN, Altman JK, Barr S, Platanias LC. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. PNAS. 2010;107:12469–12474. doi: 10.1073/pnas.1005114107. PubMed DOI PMC

Mayerhofer M, Aichleberger KJ, Florian S, Krauth MT, Hauswirth AW, Derdak S, Sperr WR, Esterbauer H, Wagner O, Marosi Ch, Pickl WF, Deininger M, Weisberg E, Druker BJ, Griffin JD, Sillaber Ch, Valent P. Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. FASEB. 2005;19:960–962. PubMed

Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T. Hedgehog signaling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–779. doi: 10.1038/nature07737. PubMed DOI PMC

Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Shcmitt-Graeff A, Landwerlin K, Veelken H, Warmuth M. Expansion of Bcr-Abl-positive leukemic stem cells is dependent of Hedgehog pathway activation. Cancer Cell. 2008;14:238–249. doi: 10.1016/j.ccr.2008.08.003. PubMed DOI

Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf ChA III, Saqyer TK, Frame MC. Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic function and their consequences for tumor cell behavior. Cancer Res. 2005;65:1335–1342. doi: 10.1158/0008-5472.CAN-04-1949. PubMed DOI

Salgia R, Brunkhorst B, Pisick E, Li JL, Lo SH, Chen LB, Griffin JD. Increased tyrosine phosphorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL. Oncogene. 1995;11:1149–1155. PubMed

Desphande AJ, Buske Ch. Knocking the Wnt out of the sails of leukemia stem cell development. Cell Stem Cell. 2007;1:597–598. doi: 10.1016/j.stem.2007.11.006. PubMed DOI

Ress A, Moelling K. Bcr is a negative regulator of the Wnt signalling pathway. EMBO. 2005;6:1095–1100. doi: 10.1038/sj.embor.7400536. PubMed DOI PMC

Kang ChD, Yoo SD, Hwanga BW, Kima KW, Kimc DW, Kima ChM, Kima SH, Chunga BS. The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res. 2000;24:527–534. doi: 10.1016/S0145-2126(00)00010-2. PubMed DOI

Chu S, Holtz M, Gupta M, Bhatia R. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood. 2004;103:3167–3174. doi: 10.1182/blood-2003-04-1271. PubMed DOI

Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Mueller-Bruesselbach S, Ottmann OG, Duyster J, Hochhasou A, Neubauer A. Compensatory PI3-kinase/Akt/mTor activation regulates resistance development. Leukemia. 2005;19:1774–1782. doi: 10.1038/sj.leu.2403898. PubMed DOI

Bruchova H, Yoon D, Agarwal AM, Mendell J, Prchal JT. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol. 2007;35:1657–1667. doi: 10.1016/j.exphem.2007.08.021. PubMed DOI PMC

Zhou B, Wang S, Mayer C, Bartel DP, Lodish HF. MiR-150, a micro RNA expressed in mature B and T cells, blocs early B cell development when expressed prematurely. Proc Natl Acad Sci. 2007;104:1080–7085. PubMed PMC

Xiao C, Calado DP, Galler G, Thai TH, Patterson HCh, Wang J, Rajewsky N, Bender TP, Rajewsky K. MiR-150 controls B-cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131:146–159. doi: 10.1016/j.cell.2007.07.021. PubMed DOI

Lu J, Guo S, Ebert BL, Zhang H, Peng Y, Bosco J, Pretz J, Schlanger R, Wang YJ, Mak RH, Dombkowski DM, Preffer FI, Scadden DT, Golub TR. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Developmental Cell. 2008;14:843–853. doi: 10.1016/j.devcel.2008.03.012. PubMed DOI PMC

Bruchova H, Yoon D, Agarwal AM, Swierczek S, Prchal JT. Erythropoiesis in polycythemia vera is hyper-proliferative and has accelerated maturation. Blood Cells, Molecules, and Diseases. 2009;43:81–87. doi: 10.1016/j.bcmd.2009.02.001. PubMed DOI PMC

Hussein K, Theophile K, Busche G, Schlegelberger B, Gohring G, Kreipe H, Bock O. Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res. 2010;34:328–334. doi: 10.1016/j.leukres.2009.06.014. PubMed DOI

Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Magrelli A, Citarella F, Messina M, Maggio R, Peragine N, Santangelo S, Mauro FR, Landgraf P, Tuschl T, Weir DB, Chien M, Russo JJ, Ju J, Sheridan R, Sander Ch, Zavolan M, Guarini A, Foa` R, Macino G. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007;109:4944–4951. doi: 10.1182/blood-2006-12-062398. PubMed DOI

Lidonnici MR, Corradini F, Waldron T, Bender TP, Calabretta B. Requirement of c-Myb for p210BCR/ABL-dependent transformation of hematopoietic progenitors and leukemogenesis. Blood. 2008;111:4771–4779. doi: 10.1182/blood-2007-08-105072. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...