Removal of anthracycline cytostatics from aquatic environment: Comparison of nanocrystalline titanium dioxide and decontamination agents

. 2019 ; 14 (10) : e0223117. [epub] 20191011

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31603899

Anthracyclines are a class of pharmaceuticals used in cancer treatment have the potential to negatively impact the environment. To study the possibilities of anthracyclines (represented by pirarubicin and valrubicin) removal, chemical inactivation using NaOH (0.01 M) and NaClO (5%) as decontamination agents and adsorption to powdered nanocrystalline titanium dioxide (TiO2) were compared. The titanium dioxide (TiO2) nanoparticles were prepared via homogeneous precipitation of an aqueous solution of titanium (IV) oxy-sulfate (TiOSO4) at different amount (5-120 g) with urea. The as-prepared TiO2 samples were characterized by XRD, HRSEM and nitrogen physisorption. The adsorption process of anthracycline cytostatics was determined followed by high-performance liquid chromatography coupled with mass spectrometry (LC-MS) and an in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) technique. It was found that NaClO decomposes anthracyclines to form various transformation products (TPs). No TPs were identified after the reaction of valrubicin with a NaOH solution as well as in the presence of TiO2 nanoparticles. The best degree of removal, 100% of pirarubicin and 85% of valrubicin, has been achieved in a sample with 120 grams of TiOSO4 (TIT120) and TiO2 with 60 grams (TIT60), respectively.

Zobrazit více v PubMed

Gestal JJ. Occupational hazards in hospitals: accidents, radiation, exposure to noxious chemicals, drug addiction and psychic problems, and assault. Occup Environ Med. 2008; 10.1136/oem.44.8.510 PubMed DOI PMC

Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS. Hospital wastewater treatment by membrane bioreactor: Performance and efficiency for organic micropollutant elimination. Environ Sci Technol. 2012; 10.1021/es203495d PubMed DOI

Weissbrodt D, Kovalova L, Ort C, Pazhepurackel V, Moser R, Hollender J, et al. Mass flows of x-ray contrast media and cytostatics in hospital wastewater. Environ Sci Technol. 2009; 10.1021/es8036725 PubMed DOI

Ciesielczyk F, Żółtowska-Aksamitowska S, Jankowska K, Zembrzuska J, Zdarta J, Jesionowski T. The role of novel lignosulfonate-based sorbent in a sorption mechanism of active pharmaceutical ingredient: batch adsorption tests and interaction study. Adsorption. 2019; 10.1007/s10450-019-00106-5 DOI

Fraga TJM, Carvalho MN, Ghislandi MG, Motta Sobrinho MA da. FUNCTIONALIZED GRAPHENE-BASED MATERIALS AS INNOVATIVE ADSORBENTS OF ORGANIC POLLUTANTS: A CONCISE OVERVIEW. Brazilian J Chem Eng. 2019; 10.1590/0104-6632.20190361s20180283 DOI

Gunture, Singh A, Bhati A, Khare P, Tripathi KM, Sonkar SK. Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation of the Mixture of Dyes and its Environmental Assessment. Sci Rep. 2019; 10.1038/s41598-019-38717-1 PubMed DOI PMC

Shukla S, Khan I, Bajpai VK, Lee H, Kim T, Upadhyay A, et al. Sustainable Graphene Aerogel as an Ecofriendly Cell Growth Promoter and Highly Efficient Adsorbent for Histamine from Red Wine. ACS Appl Mater Interfaces. 2019; 10.1021/acsami.9b02857 PubMed DOI

Sharma M, Joshi M, Nigam S, Shree S, Avasthi DK, Adelung R, et al. ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem Eng J. 2019; 10.1016/j.cej.2018.10.031 DOI

Gao Q, Xu J, Bu XH. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews. 2019. 10.1016/j.ccr.2018.03.015 DOI

Petranovska AL, Abramov N V, Turanska SP, Gorbyk PP, Kaminskiy AN, Kusyak N V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J Nanostructure Chem. 2015;5: 275–285. 10.1007/s40097-015-0159-9 DOI

Curry DE, Andrea KA, Carrier AJ, Nganou C, Scheller H, Yang D, et al. Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: Insights into removal of waterborne pharmaceuticals by TiO2nanoparticles. Environ Sci Nano. 2018; 10.1039/c7en01171g DOI

Lin HHH, Lin AYC, Hung CL. Photocatalytic oxidation of cytostatic drugs by microwave-treated N-doped TiO2 under visible light. J Chem Technol Biotechnol. 2015;90: 1345–1354. 10.1002/jctb.4503 DOI

Lash BW, Gilman PB. Principles of Cytotoxic Chemotherapy. Cancer Immunother Immune Suppr Tumor Growth Second Ed. 2013; 167–185. 10.1016/B978-0-12-394296-8.00012-9 DOI

Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355: 1114–1123. 10.1056/NEJMoa060829 PubMed DOI

Kosjek T, Heath E. Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC—Trends Anal Chem. 2011;30: 1065–1087. 10.1016/j.trac.2011.04.007 DOI

Süle A, Süle A. Safety assessment and revision of a central cytostatic unit based on ESOP guidelines. Eur J Oncol Pharm. 2014;

Hansel S, Castegnaro M, Sportouch MH, De Méo M, Milhavet JC, Laget M, et al. Chemical degradation of wastes of antineoplastic agents: Cyclophosphamide, ifosfamide and melphalan. Int Arch Occup Environ Health. 1997;69: 109–114. 10.1007/s004200050124 PubMed DOI

Castegnaro M, De Méo M, Laget M, Michelon J, Garren L, Sportouch MH, et al. Chemical degradation of wastes of antineoplastic agents. 2: Six anthracyclines: idarubicin, doxorubicin, epirubicin, pirarubicin, aclarubicin, and daunorubicin. Int Arch Occup Environ Health. 1997;70: 378–84. Available: http://www.ncbi.nlm.nih.gov/pubmed/9439983 10.1007/s004200050232 PubMed DOI

Queruau Lamerie T, Nussbaumer S, Décaudin B, Fleury-Souverain S, Goossens JF, Bonnabry P, et al. Evaluation of decontamination efficacy of cleaning solutions on stainless steel and glass surfaces contaminated by 10 antineoplastic agents. Ann Occup Hyg. 2013;57: 456–469. 10.1093/annhyg/mes087 PubMed DOI

Xie H. Occurrence, Ecotoxicology, and Treatment of Anticancer Agents as Water Contaminants. J Env Anal Toxicol. 2012; 10.4172/2161-0525.S2-002 DOI

Weber GF, Waxman DJ. Denitrosation of the Anti-Cancer Drug 1,3-Bis(2-chloroethyl)-1-nitrosourea Catalyzed by Microsomal Glutathione S-Transferase and Cytochrome P450 Monooxygenases. Arch Biochem Biophys. 1993;307: 369–378. 10.1006/abbi.1993.1602 PubMed DOI

Kazner C, Lehnberg K, Kovalova L, Wintgens T, Melin T, Hollender J, et al. Removal of endocrine disruptors and cytostatics from effluent by nanofiltration in combination with adsorption on powdered activated carbon. Water Sci Technol. 2008;58: 1699–1706. 10.2166/wst.2008.542 PubMed DOI

Štenglova Netikova IR, Slušná M, Tolasz J, Št’Astný M, Popelka Š, Štengl V. A new possible way of anthracycline cytostatics decontamination. New J Chem. 2017;41 10.1039/c6nj03051c DOI

Štenglová-Netíková IR, Petruželka L, Šťastný M, Štengl V. Anthracycline antibiotics derivate mitoxantrone—Destructive sorption and photocatalytic degradation. PLoS One. 2018;13: 1–15. 10.1371/journal.pone.0193116 PubMed DOI PMC

Netíková IRŠ, Petruželka L, Šťastný M, Štengl V. Safe decontamination of cytostatics from the nitrogen mustards family. Part one: Cyclophosphamide and ifosfamide. Int J Nanomedicine. 2018; 10.2147/IJN.S159328 PubMed DOI PMC

Zheng L, Chen J, Ma Z, Liu W, Yang F, Yang Z, et al. Capsaicin enhances anti-proliferation efficacy of pirarubicin via activating TRPV1 and inhibiting PCNA nuclear translocation in 5637 cells. Mol Med Rep. 2016; 10.3892/mmr.2015.4623 PubMed DOI

Onrust S V., Lamb HM. Valrubicin. Drugs and Aging. 1999. 10.2165/00002512-199915010-00006 PubMed DOI

Henych J, Štengl V, Slušná M, Matys Grygar T, Janoš P, Kuráň P, et al. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides. Appl Surf Sci. 2015;344: 9–16. 10.1016/j.apsusc.2015.02.181 DOI

Šteng V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol. 2005;80: 754–758. 10.1002/jctb.1218 DOI

Houǎková V, Štengl V, Bakardjieva S, Murafa N, Tyrpekl V. Photocatalytic properties of Ru-doped titania prepared by homogeneous hydrolysis. Cent Eur J Chem. 2009; 10.2478/s11532-009-0019-x DOI

Stenglová-Netíková IR, Petruzelka L, Stastny M, Stengl V. Anthracycline antibiotics derivate mitoxantrone—Destructive sorption and photocatalytic degradation. PLoS One. 2018; 10.1371/journal.pone.0193116 PubMed DOI PMC

Štengl V, Št’Astný M, Janoš P, Mazanec K, Perez-Diaz JLJL, Štenglová-Netíková IRIR. From the Decomposition of Chemical Warfare Agents to the Decontamination of Cytostatics. Ind Eng Chem Res. 2018;57: 2114–2122. 10.1021/acs.iecr.7b04253 DOI

Stenglová-Netíková IR, Petruzelka L, Stastny M, Stengl V. Anthracycline antibiotics derivate mitoxantrone—Destructive sorption and photocatalytic degradation. PLoS One. 2018;13 10.1371/journal.pone.0193116 PubMed DOI PMC

Holzwarth U, Gibson N. The Scherrer equation versus the “Debye-Scherrer equation.” Nat Nanotechnol. 2011;6: 534–534. 10.1038/nnano.2011.145 PubMed DOI

Šťastný M, Tolasz J, Štengl V, Henych J, Žižka D. Graphene oxide/MnO2 nanocomposite as destructive adsorbent of nerve-agent simulants in aqueous media. Appl Surf Sci. 2017;412: 19–28. 10.1016/j.apsusc.2017.03.228 DOI

Štengl V, Grygar TM, Opluštil F, Němec T. Ge4+ doped TiO2 for stoichiometric degradation of warfare agents. J Hazard Mater. 2012; 10.1016/j.jhazmat.2012.05.007 PubMed DOI

Štengl V, Houšková V, Murafa N, Bakardjieva S. Synthesis of mesoporous titania by homogeneous hydrolysis of titania oxo-sulfate in the presence of cationic and anionic surfactants. Ceram—Silikaty. 2010;54: 368–378.

Štengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J. 2013; 10.1186/1752-153X-7-41 PubMed DOI PMC

Štengl V, Velická J, Maříková M, Grygar TM. New generation photocatalysts: How tungsten influences the nanostructure and photocatalytic activity of TiO2 in the UV and visible regions. ACS Appl Mater Interfaces. 2011; 10.1021/am2008757 PubMed DOI

Štengl V, Bludská J, Opluštil F, Němec T. Mesoporous titanium–manganese dioxide for sulphur mustard and soman decontamination. Mater Res Bull. 2011;46: 2050–2056. 10.1016/j.materresbull.2011.07.003 DOI

Naderi M. Surface Area: Brunauer-Emmett-Teller (BET). Progress in Filtration and Separation. 2014. pp. 585–608. 10.1016/B978-0-12-384746-1.00014-8 DOI

IUPAC. Recommendations for the characterization of porous solids. Pure Appl Chem. 1994;66: 1739–1758. 10.1351/pac199466081739 DOI

McCready DE, Balmer M Lou, Keefer KD. Experimental and calculated X-ray powder diffraction data for cesium titanium silicate, CsTiSi2O6.5: A new zeolite. Powder Diffr. 1997; 10.1017/S0885715600009416 DOI

Ijadpanah-Saravy H, Safari M, Khodadadi-Darban A, Rezaei A. Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. Anal Lett. 2014;47: 1772–1782. 10.1080/00032719.2014.880170 DOI

Štengl V, Šubrt J, Bezdička P, Maříková M, Bakardjieva S. Homogenous Precipitation with Urea–an Easy Process for Making Spherical Hydrous Metal Oxides. Solid State Phenom. 2003; doi: 10.4028/ www.scientific.net/SSP.90-91.121 DOI

Šteng V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol. 2005;80: 754–758. 10.1002/jctb.1218 DOI

Daněk O, Štengl V, Bakardjieva S, Murafa N, Kalendová A, Opluštil F. Nanodispersive mixed oxides for destruction of warfare agents prepared by homogeneous hydrolysis with urea. J Phys Chem Solids. 2007;68: 707–711. 10.1016/j.jpcs.2007.01.044 PubMed DOI

Derksen JJ. Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE J. 2012; 10.1002/aic.12669 DOI

Robert J, David M, Huet S, Chauvergne J. Pharmacokinetics and metabolism of pirarubicin in advanced cancer patients. Eur J Cancer Clin Oncol. 1988;24: 1289–1294. 10.1016/0277-5379(88)90217-9 PubMed DOI

Cong W, Liang Q, Li L, Shi J, Liu Q, Feng Y, et al. Metabonomic study on the cumulative cardiotoxicity of a pirarubicin liposome powder. Talanta. 2012;89: 91–98. 10.1016/j.talanta.2011.11.071 PubMed DOI

Ibsen S, Zahavy E, Wrasdilo W, Berns M, Chan M, Esener S. A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res. 2010; 10.1007/s11095-010-0183-x PubMed DOI PMC

Nazari B, Jaafari M. A new method for the synthesis of MgO nanoparticles for the destructive adsorption of organo-phosphorus compounds. Dig J Nanomater Biostructures. 2010;

Bisio C, Carniato F, Palumbo C, Safronyuk SL, Starodub MF, Katsev AM, et al. Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catal Today. 2016; 10.1016/j.cattod.2016.08.014 DOI

Zafrani Y, Goldvaser M, Dagan S, Feldberg L, Mizrahi D, Waysbort D, et al. Degradation of sulfur mustard on KF/Al2O3 supports: Insights into the products and the reactions mechanisms. J Org Chem. 2009; 10.1021/jo901713c PubMed DOI

Karmakar S, Maji M, Mukherjee A. Modulation of the reactivity of nitrogen mustards by metal complexation: Approaches to modify their therapeutic properties. Dalton Transactions. 2019. 10.1039/c8dt04503h PubMed DOI

Barick KC, Nigam S, Bahadur D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J Mater Chem. 2010; 10.1039/c0jm00022a DOI

Chao CS, Liu KH, Tung WL, Chen SY, Liu DM, Chang YP. Bioactive TiO2 ultrathin film with worm-like mesoporosity for controlled drug delivery. Microporous Mesoporous Mater. 2012; 10.1016/j.micromeso.2011.12.005 DOI

Heredia-Cervera BE, González-Azcorra SA, Rodríguez-Gattorno G, López T, Ortiz-Islas E, Oskam G. Controlled release of phenytoin from nanostructured TiO2reservoirs. Sci Adv Mater. 2009; 10.1166/sam.2009.1009 DOI

Huang P, Wang J, Lai S, Liu F, Ni N, Cao Q, et al. Surface modified titania nanotubes containing anti-bacterial drugs for controlled delivery nanosystems with high bioactivity. J Mater Chem B. 2014; 10.1039/c4tb01281j PubMed DOI

Mund R, Panda N, Nimesh S, Biswas A. Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells. J Nanoparticle Res. 2014; 10.1007/s11051-014-2739-x DOI

Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small. 2007; 10.1002/smll.200700412 PubMed DOI

Sulka GD, Kapusta-Kołodziej J, Brzózka A, Jaskuła M. Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim Acta. 2010; 10.1016/j.electacta.2009.12.053 DOI

Gulati K, Kant K, Findlay D, Losic D. Periodically tailored titania nanotubes for enhanced drug loading and releasing performances. J Mater Chem B. 2015; 10.1039/c4tb01882f PubMed DOI

Ren W, Zeng L, Shen Z, Xiang L, Gong A, Zhang J, et al. Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers. RSC Adv. 2013; 10.1039/c3ra42863j DOI

Qin Y, Sun L, Li X, Cao Q, Wang H, Tang X, et al. Highly water-dispersible TiO2 nanoparticles for doxorubicin delivery: Effect of loading mode on therapeutic efficacy. J Mater Chem. 2011; 10.1039/c1jm13615a DOI

Lin L, Jiang W, Bechelany M, Nasr M, Jarvis J, Schaub T, et al. Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms. Chemosphere. 2019; 10.1016/j.chemosphere.2018.12.184 PubMed DOI

Tanveer M, Guyer GT, Abbas G. Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation. Water Environ Res. 2019;91: 822–829. 10.1002/wer.1104 PubMed DOI

Galkina OL, Önneby K, Huang P, Ivanov VK, Agafonov A V., Seisenbaeva GA, et al. Antibacterial and photochemical properties of cellulose nanofiber-titania nanocomposites loaded with two different types of antibiotic medicines. J Mater Chem B. 2015; 10.1039/c5tb01382h PubMed DOI

Zhang Y, He F, Sun Z, Li L, Huang Y. Controlled delivery of dexamethasone from TiO2 film with nanoporous structure on Ti-25Nb-3Mo-2Sn-3Zr biomedical alloy without polymeric carrier. Mater Lett. 2014; 10.1016/j.matlet.2013.11.103 PubMed DOI PMC

Curry DE, Andrea KA, Carrier AJ, Nganou C, Scheller H, Yang D, et al. Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: insights into removal of waterborne pharmaceuticals by TiO2 nanoparticles. Environ Sci Nano. 2018;5: 1027–1035. 10.1039/C7EN01171G DOI

Belatik A, Hotchandani S, Bariyanga J, Tajmir-Riahi HA. Binding sites of retinol and retinoic acid with serum albumins. Eur J Med Chem. 2012; 10.1016/j.ejmech.2011.12.002 PubMed DOI

Zhang G, Que Q, Pan J, Guo J. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J Mol Struct. 2008; 10.1016/j.molstruc.2007.09.002 DOI

Kumar R, Gokulakrishnan N, Kumar R, Krishna VM, Saravanan A, Supriya S, et al. Can Be a Bimetal Oxide ZnO—MgO Nanoparticles Anticancer Drug Carrier and Deliver? Doxorubicin Adsorption/Release Study. J Nanosci Nanotechnol. 2015;15: 1543–1553. 10.1166/jnn.2015.8915 PubMed DOI

Stumm W. Transition metal oxides: surface chemistry and catalysis. Adv Colloid Interface Sci. 2002; 10.1016/0001-8686(91)80024-e DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...