TiO2-graphene oxide nanocomposite as advanced photocatalytic materials

. 2013 Feb 27 ; 7 (1) : 41. [epub] 20130227

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23445868

BACKGROUND: Graphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties. RESULTS: TiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer-Emmett-Teller surface area and Barrett-Joiner-Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase. CONCLUSIONS: The best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light.

Zobrazit více v PubMed

Krishnamoorthy K, Mohan R, Kim SJ. Graphene oxide as a photocatalytic material. Appl Phys Lett. 2011;98(24)

Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL. Synthesis and characterization of titania-graphene nanocomposites. J Phys Chem C. 2009;113(46):19812–19823. doi: 10.1021/jp905456f. DOI

Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano. 2010;4(11):6425–6432. doi: 10.1021/nn102130m. PubMed DOI

Zhang Q, He Y, Chen X, Hu D, Li L, Yin T, Ji L. Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chinese Sci Bull. 2011;56(3):331–339. doi: 10.1007/s11434-010-3111-x. DOI

Min S, Lu G. Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. J Phys Chem C. 2011;115(28):13938–13945. doi: 10.1021/jp203750z. DOI

Liang YT, Vijayan BK, Gray KA, Hersam MC. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 2011;11(7):2865–2870. doi: 10.1021/nl2012906. PubMed DOI

Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon. 2011;49(8):2693–2701. doi: 10.1016/j.carbon.2011.02.059. DOI

Stengl V, Popelkova D, Vlacil P. TiO2-graphene nanocomposite as high performace photocatalysts. J Phys Chem C. 2011;115(51):25209–25218. doi: 10.1021/jp207515z. DOI

Stengl V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem - Eur J. 2012. PubMed DOI

JCPDS. PDF 2 database, Release 50. Newtown Square: International Centre for Diffraction Data; 2000.

ICSD. ICSD Database. Germany: FIZ Karlsruhe; 2008.

Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI

Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances.1. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73(1):373–380. doi: 10.1021/ja01145a126. DOI

Orel ZC, Gunde MK, Orel B. Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints. Prog Org Coat. 1997;30(1–2):59–66.

Stengl V, Houskova V, Bakardjieva S, Murafa N, Havlin V. Optically transparent titanium dioxide particles incorporated in poly(hydroxyethyl methacrylate) thin layers. J Phys Chem C. 2008;112(50):19979–19985. doi: 10.1021/jp803194p. DOI

Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI

Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C. 2008;112(22):8192–8195. doi: 10.1021/jp710931h. DOI

Jung HG, Myung ST, Yoon CS, Son SB, Oh KH, Amine K, Scrosati B, Sun YK. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci. 2011;4(4):1345–1351. doi: 10.1039/c0ee00620c. DOI

Murafa N, Stengl V, Houskova V. Monodispersed spindle-like particles of titania. Microsc Microanal. 2009;15:1036–1037. doi: 10.1017/S1431927609097359. DOI

Lowell S, Shields JE. Powder Surface Area and Porosity. 1998.

de Boer JA. In Structure & Properties of Porous Materials. 1958.

Ookubo A, Kanezaki E, Ooi K. ESR, XRD, and DRS studies of paramagnetic Ti3+ ions in a colloidal solid of titanium-oxide prepared by the hydrolysis of TiCl3. Langmuir. 1990;6(1):206–209. doi: 10.1021/la00091a033. DOI

Seredych M, Bandosz TJ. Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites. J Phys Chem C. 2010;114(34):14552–14560. doi: 10.1021/jp1051479. DOI

Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47(1):145–152. doi: 10.1016/j.carbon.2008.09.045. DOI

Shao GS, Zhang XJ, Yuan ZY. Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl Catal Environ. 2008;82(3–4):208–218.

Lam E, Chong JH, Majid E, Liu Y, Hrapovic S, Leung ACW, Luong JHT. Carbocatalytic dehydration of xylose to furfural in water. Carbon. 2012;50(3):1033–1043. doi: 10.1016/j.carbon.2011.10.007. DOI

Bentley FF, Smithson LD, Rozek AL. Infrared Spektra and Characteristic Frequencies 700–300 cm-1. New-York: Wiley-Interscience; 1968.

Zhang Y, Tang Z-R, Fu X, Xu Y-J. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2‚àíCarbon composite materials? ACS Nano. 2010;4(12):7303–7314. doi: 10.1021/nn1024219. PubMed DOI

Christy AA, Kvalheim OM, Velapoldi RA. Quantitative-analysis in diffuse-reflectance spectrometry - a modified Kubelka-Munk equation. Vib Spectrosc. 1995;9(1):19–27. doi: 10.1016/0924-2031(94)00065-O. DOI

Reddy KM, Manorama SV, Reddy AR. Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys. 2003;78(1):239–245. doi: 10.1016/S0254-0584(02)00343-7. DOI

Tauc J, Grigorov R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi. 1966;15(2):627–637. doi: 10.1002/pssb.19660150224. DOI

Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles - size quantization or direct transitions in this indirect semiconductor. J Phys Chem. 1995;99(45):16646–16654. doi: 10.1021/j100045a026. DOI

Jeong HK, Jin MH, So KP, Lim SC, Lee YH. Tailoring the characteristics of graphite oxides by different oxidation times. J Phys D: Appl Phys. 2009;42(6):Article number 065418.

Zhang Y, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci. 2011;46(8):2622–2626. doi: 10.1007/s10853-010-5116-x. DOI

Lorences MJ, Patience GS, Diez FV, Coca J. Transient n-butane partial oxidation kinetics over VPO. Appl Catal A-General. 2004;263(2):193–202. doi: 10.1016/j.apcata.2003.12.023. DOI

Djeghri N, Formenti M, Juillet F, Teichner SJ. Photointeraction on surface of titanium-dioxide between oxygen and alkanes. Faraday Discuss. 1974;58:185–193.

Sasirekha N, Basha SJS, Shanthi K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl Catal Environ. 2006;62(1–2):169–180.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...