Enzymatic activity and immunoreactivity of Aca s 4, an alpha-amylase allergen from the storage mite Acarus siro
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22292590
PubMed Central
PMC3306266
DOI
10.1186/1471-2091-13-3
PII: 1471-2091-13-3
Knihovny.cz E-zdroje
- MeSH
- Acaridae enzymologie imunologie MeSH
- alergeny chemie imunologie izolace a purifikace MeSH
- alergie krev imunologie MeSH
- alfa-amylasy chemie imunologie izolace a purifikace MeSH
- feces chemie MeSH
- hmyzí proteiny chemie imunologie izolace a purifikace MeSH
- imunoglobulin E krev MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- strukturní homologie proteinů MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- zkřížené reakce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alergeny MeSH
- alfa-amylasy MeSH
- hmyzí proteiny MeSH
- imunoglobulin E MeSH
BACKGROUND: Enzymatic allergens of storage mites that contaminate stored food products are poorly characterized. We describe biochemical and immunological properties of the native alpha-amylase allergen Aca s 4 from Acarus siro, a medically important storage mite. RESULTS: A. siro produced a high level of alpha-amylase activity attributed to Aca s 4. This enzyme was purified and identified by protein sequencing and LC-MS/MS analysis. Aca s 4 showed a distinct inhibition pattern and an unusual alpha-amylolytic activity with low sensitivity to activation by chloride ions. Homology modeling of Aca s 4 revealed a structural change in the chloride-binding site that may account for this activation pattern. Aca s 4 was recognized by IgE from house dust mite-sensitive patients, and potential epitopes for cross-reactivity with house dust mite group 4 allergens were found. CONCLUSIONS: We present the first protein-level characterization of a group 4 allergen from storage mites. Due to its high production and IgE reactivity, Aca s 4 is potentially relevant to allergic hypersensitivity.
Zobrazit více v PubMed
Fernández-Caldas E, Iraola Calvo V. Mite allergens. Curr Allergy Asthma Rep. 2005;5:402–410. doi: 10.1007/s11882-005-0014-z. PubMed DOI
Fernández-Caldas E, Iraola V, Carnés J. Molecular and biochemical properties of storage mites (except Blomia species) Protein Pept Lett. 2007;14:954–959. doi: 10.2174/092986607782541033. PubMed DOI
Olsson S, van Hage-Hamsten M. Allergens from house dust and storage mites: similarities and differences, with emphasis on the storage mite Lepidoglyphus destructor. Clin Exp Allergy. 2000;30:912–919. doi: 10.1046/j.1365-2222.2000.00815.x. PubMed DOI
Van der Heide S, Niemeijer NR, Hovenga H, de Monchy JG, Dubois AE, Kauffman HF. Prevalence of sensitization to the storage mites Acarus siro, Tyrophagus putrescentiae, and Lepidoglyphus destructor in allergic patients with different degrees of sensitization to the house-dust mite Dermatophagoides pteronyssinus. Allergy. 1998;53:426–430. doi: 10.1111/j.1398-9995.1998.tb03917.x. PubMed DOI
Pittner G, Vrtala S, Thomas WR, Weghofer M, Kundi M, Horak F, Kraft D, Valenta R. Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin Exp Allergy. 2004;34:597–603. doi: 10.1111/j.1365-2222.2004.1930.x. PubMed DOI
Arias-Irigoyen J, Lombardero M, Arteaga C, Carpizo JA, Barber D. Limited IgE cross-reactivity between Dermatophagoides pteronyssinus and Glycyphagus domesticus in patients naturally exposed to both mite species. J Allergy Clin Immunol. 2007;120:98–104. doi: 10.1016/j.jaci.2007.02.028. PubMed DOI
Johansson E, Johansson SGO, van Hage-Hamsten M. Allergenic characterization of Acarus siro and Tyrophagus putrescentiae and their crossreactivity with Lepidoglyphus destructor and Dermatophagoides pteronyssinus. Clin Exp Allergy. 1994;24:743–751. doi: 10.1111/j.1365-2222.1994.tb00985.x. PubMed DOI
Luczynska CM, Griffin P, Davies RJ, Topping MD. Prevalence of specific IgE to storage mites (A. siro, L. destructor and T. longior) in an urban population and cross reactivity with the house dust mite (D. pteronyssinus) Clin Exp Allergy. 1990;20:403–406. doi: 10.1111/j.1365-2222.1990.tb02801.x. PubMed DOI
Puerta L, Fernandez-Caldas E, Lockey RF, Caraballo LR. Sensitization to Chortoglyphus arcuatus and Aleuroglyphus ovatus in Dermatophagoides spp. allergic individuals. Clin Exp Allergy. 1993;23:117–123. doi: 10.1111/j.1365-2222.1993.tb00306.x. PubMed DOI
Janecek S. Alpha-amylase family: molecular biology and evolution. Prog Biophys Mol Biol. 1997;67:67–97. doi: 10.1016/S0079-6107(97)00015-1. PubMed DOI
MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta. 2001;1546:1–20. doi: 10.1016/S0167-4838(00)00302-2. PubMed DOI
Cheong N, Ramos JD, Tang CY, Chng HH, Yao R, Liang Z, Lee BW, Chua KY. Mite amylase from Blomia tropicalis (Blo t 4): differential allergenicity linked to geographical regions. Int Arch Allergy Immunol. 2009;149(1):25–32. PubMed
Mills KL, Hart BJ, Lynch NR, Thomas WR, Smith W. Molecular characterization of the group 4 house dust mite allergen from Dermatophagoides pteronyssinus and its amylase homologue from Euroglyphus maynei. Int Arch Allergy Immunol. 1999;120:100–107. PubMed
Lake FR, Ward LD, Simpson RJ, Thompson PJ, Stewart GA. Allergenicity and physicochemical characterization of house dust mite derived amylase. Int Arch Allergy Appl Immunol. 1991;94:357–358. doi: 10.1159/000235402. PubMed DOI
Sánchez-Monge R, García-Casado G, Barber D, Salcedo G. Interaction of allergens from house-dust mite and from cereal flours: Dermatophagoides pteronyssinus alpha-amylase (Der p 4) and wheat and rye alpha-amylase inhibitors. Allergy. 1996;51:176–180. PubMed
Hales BJ, Laing IA, Pearce LJ, Hazell LA, Mills KL, Chua KY, Thornton RB, Richmond P, Musk AW, James AL, Lesouëf PN, Thomas WR. Distinctive immunoglobulin E anti-house dust allergen-binding specificities in a tropical Australian Aboriginal community. Clin Exp Allergy. 2007;37:1357–1363. doi: 10.1111/j.1365-2222.2007.02786.x. PubMed DOI
Hubert J, Doleckova L, Hyblova J, Kudlikova I, Stejskal V, Mares M. In vitro and in vivo inhibition of α-amylases of stored-product mite Acarus siro. Exp Appl Acarol. 2005;35:281–291. doi: 10.1007/s10493-004-7834-8. PubMed DOI
Numao S, Maurus R, Sidhu G, Wang Y, Overall CM, Brayer GD, Withers SG. Probing the role of the chloride ion in the mechanism of human pancreatic alpha-amylase. Biochemistry. 2002;41:215–225. doi: 10.1021/bi0115636. PubMed DOI
D'Amico S, Gerday C, Feller G. Structural similarities and evolutionary relationships in chloridedependent α-amylases. Gene. 2000;253:95–105. doi: 10.1016/S0378-1119(00)00229-8. PubMed DOI
Kluh I, Horn M, Hyblova J, Hubert J, Doleckova-Maresova L, Voburka Z, Kudlikova I, Kocourek F, Mares M. Inhibitory specificity and insecticidal selectivity of α-amylase inhibitor from Phaseolus vulgaris. Phytochemistry. 2005;66:31–39. doi: 10.1016/j.phytochem.2004.11.001. PubMed DOI
Pytelkova J, Hubert J, Lepsik M, Sobotnik J, Sindelka R, Krizková I, Horn M, Mares M. Digestive alpha-amylases of the flour moth Ephestia kuehniella - adaptation to alkaline environment and plant inhibitors. FEBS J. 2009;276:3531–3546. doi: 10.1111/j.1742-4658.2009.07074.x. PubMed DOI
Dolecková-Maresova L, Pavlik M, Horn M, Mares M. De novo design of α-amylase inhibitor: A small linear mimetic of macromolecular proteinaceous ligands. Chem Biol. 2005;12:1349–1357. doi: 10.1016/j.chembiol.2005.10.005. PubMed DOI
Erban T, Erbanova M, Nesvorna M, Hubert J. The importance of starch and sucrose digestion in nutritive biology of synanthropic acaridid mites: alpha-amylases and alpha-glucosidases are suitable targets for inhibitor-based strategies of mite control. Arch Insect Biochem Physiol. 2009;71:139–158. doi: 10.1002/arch.20312. PubMed DOI
Horn M, Baudys M, Voburka Z, Kluh I, Vondrasek J, Mares M. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I) Protein Sci. 2002;11:933–943. doi: 10.1110/ps.2910102. PubMed DOI PMC
Hubert J, Hyblova J, Munzbergova Z, Pekar S, Kudlikova I, Doleckova-Maresova L, Stejskal V, Mares M. Combined effect of antifeedant α-amylase inhibitor and predator Cheyletus malaccensis in controlling the stored mite pest Acarus siro. Physiol Entomol. 2007;32:41–49. doi: 10.1111/j.1365-3032.2006.00539.x. DOI
Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31:3381–3385. doi: 10.1093/nar/gkg520. PubMed DOI PMC
Chen VB, Arendall 3rd WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 1):12–21. PubMed PMC