Growth-suppressive effect of the α-amylase inhibitor of Triticum aestivum on stored-product mites varies by the species and type of diet
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- dieta MeSH
- druhová specificita MeSH
- rostlinné proteiny toxicita MeSH
- roztoči účinky léků růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- WDAI-3 protein, Triticum aestivum MeSH Prohlížeč
A naturally occurring α-amylase inhibitor (α-AI) of Triticum aestivum protects wheat grain from gramnivorous arthropod pests. The α-AI (Type-I) was incorporated into carbohydrate and protein diets to test its inhibitory activity on the stored-product mites Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae (Acari: Astigmata). Growth tests of mites fed the various diets were used to compare the suppressive effects. The final population size of mites attained from an initial population of 50 specimens maintained under controlled conditions (85 % relative humidity and 25 °C) was compared after 21 days of cultivation. The results showed that α-AI in the concentration in the range of 0.01-1 mg g(-1) did not suppress the growth of the tested stored-product mites. α-AI at a concentration of 10 mg g(-1) exerted a growth-suppressive effect that depended on the diet and species of the mites. The growth rate of A. siro was affected by the type of diet and was higher on carbohydrate diet than on the protein diet, the suppressive effect of α-AI was on the both diets. The growth-suppressive effect of α-AI on L. destructor and T. putrescentiae was significant when they were fed the protein diet but not when they were fed the carbohydrate diet. The higher resistance of tested mites to α-AI (proteinaceous) compared to non-proteinaceous acarbose corresponds to a powerful proteotolytic system in the mite gut. The results are discussed in terms of the adaptability of mites to utilize the starch from food sources.
Zobrazit více v PubMed
Arch Insect Biochem Physiol. 2010 Nov;75(3):187-206 PubMed
Annu Rev Plant Biol. 2003;54:207-33 PubMed
Arch Insect Biochem Physiol. 2009 Jul;71(3):139-58 PubMed
Eur J Biochem. 2002 Jan;269(2):397-412 PubMed
Exp Appl Acarol. 2008 Mar;44(3):199-212 PubMed
BMC Biochem. 2012 Jan 31;13:3 PubMed
J Med Entomol. 2006 Nov;43(6):1200-7 PubMed
Exp Appl Acarol. 2008 Mar;44(3):213-26 PubMed
J Econ Entomol. 2005 Jun;98(3):1058-69 PubMed
Allergy. 1996 Mar;51(3):176-80 PubMed
Exp Appl Acarol. 2013 Jun;60(2):241-52 PubMed
Arch Insect Biochem Physiol. 2011 Oct;78(2):74-86 PubMed
Exp Appl Acarol. 2012 Mar;56(3):191-208 PubMed
Exp Appl Acarol. 2001;25(3):203-15 PubMed
J Econ Entomol. 2006 Dec;99(6):2146-50 PubMed
Arch Insect Biochem Physiol. 2000 Jun;44(2):69-81 PubMed
Clin Exp Allergy. 1997 Aug;27(8):921-5 PubMed
J Insect Sci. 2010;10:42 PubMed
FEBS J. 2009 Jul;276(13):3531-46 PubMed
Phytochemistry. 2005 Jan;66(1):31-9 PubMed
J Econ Entomol. 2011 Oct;104(5):1752-64 PubMed
Exp Appl Acarol. 2005;35(4):281-91 PubMed
Exp Appl Acarol. 1992 Nov;16(1-2):165-80 PubMed
Insect Biochem Mol Biol. 1996 May;26(5):419-26 PubMed