The Role of Cysteine Residues in Catalysis of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
28135343
PubMed Central
PMC5279734
DOI
10.1371/journal.pone.0170373
PII: PONE-D-16-33257
Knihovny.cz E-resources
- MeSH
- Amino Acid Motifs MeSH
- Biocatalysis * MeSH
- Cysteine metabolism MeSH
- Disulfides metabolism MeSH
- Phosphoenolpyruvate Carboxykinase (ATP) chemistry metabolism MeSH
- Kinetics MeSH
- Models, Molecular MeSH
- Mutation genetics MeSH
- Mutagenesis, Site-Directed MeSH
- Mutant Proteins chemistry MeSH
- Mycobacterium tuberculosis enzymology MeSH
- Protein Structure, Secondary MeSH
- Amino Acid Sequence MeSH
- Enzyme Stability MeSH
- Substrate Specificity MeSH
- Tandem Mass Spectrometry MeSH
- Protein Structure, Tertiary MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cysteine MeSH
- Disulfides MeSH
- Phosphoenolpyruvate Carboxykinase (ATP) MeSH
- Mutant Proteins MeSH
Mycobacterium tuberculosis (MTb), the causative agent of tuberculosis, can persist in macrophages for decades, maintaining its basic metabolic activities. Phosphoenolpyruvate carboxykinase (Pck; EC 4.1.1.32) is a key player in central carbon metabolism regulation. In replicating MTb, Pck is associated with gluconeogenesis, but in non-replicating MTb, it also catalyzes the reverse anaplerotic reaction. Here, we explored the role of selected cysteine residues in function of MTb Pck under different redox conditions. Using mass spectrometry analysis we confirmed formation of S-S bridge between cysteines C391 and C397 localized in the C-terminal subdomain. Molecular dynamics simulations of C391-C397 bridged model indicated local conformation changes needed for formation of the disulfide. Further, we used circular dichroism and Raman spectroscopy to analyze the influence of C391 and C397 mutations on Pck secondary and tertiary structures, and on enzyme activity and specificity. We demonstrate the regulatory role of C391 and C397 that form the S-S bridge and in the reduced form stabilize Pck tertiary structure and conformation for gluconeogenic and anaplerotic reactions.
See more in PubMed
Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE, Boshoff HI. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 2011;7: e1002287 10.1371/journal.ppat.1002287 PubMed DOI PMC
Srinivasan V, Morowitz H. Ancient genes in contemporary persistent microbial pathogens. Biol Bull. 2006;2: 1–9. Available: http://www.biolbull.org/content/210/1/1.short PubMed
Rohde KH, Veiga DFT, Caldwell S, Balázsi G, Russell DG. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog. 2012;8: e1002769 10.1371/journal.ppat.1002769 PubMed DOI PMC
Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol. 2007;65: 684–699. 10.1111/j.1365-2958.2007.05827.x PubMed DOI PMC
Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, Mizrahi V, et al. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A. 2005;102: 15629–15634. 10.1073/pnas.0507850102 PubMed DOI PMC
Beste DJ V, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL, et al. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol. 2013;20: 1012–21. 10.1016/j.chembiol.2013.06.012 PubMed DOI PMC
Shi L, Sohaskey CD, Pfeiffer C, Datta P, Parks M, McFadden J, et al. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol. 2010;78: 1199–215. 10.1111/j.1365-2958.2010.07399.x PubMed DOI PMC
Beste DJ V, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, et al. 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. Rubin EJ, editor. PLoS Pathog. 2011;7: e1002091 10.1371/journal.ppat.1002091 PubMed DOI PMC
Machová I, Snášel J, Zimmermann M, Laubitz D, Plocinski P, Oehlmann W, et al. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. J Biol Chem. 2014;289: 13066–78. 10.1074/jbc.M113.536748 PubMed DOI PMC
Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, et al. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. Cardona P-J, editor. PLoS One. 2015;10: e0120682 10.1371/journal.pone.0120682 PubMed DOI PMC
Liu F, van Breukelen B, Heck AJR. Facilitating protein disulfide mapping by a combination of pepsin digestion, electron transfer higher energy dissociation (EThcD), and a dedicated search algorithm SlinkS. Mol Cell Proteomics. 2014;13: 2776–86. 10.1074/mcp.O114.039057 PubMed DOI PMC
Case DA, Darden T, Iii TEC, Simmerling C, Brook S, Roitberg A, et al. Amber 14. Univ California, San Fr: 2014
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65: 712–725. 10.1002/prot.21123 PubMed DOI PMC
Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112: 9020–41. 10.1021/jp8001614 PubMed DOI PMC
Žáková L, Kletvíková E, Veverka V, Lepsík M, Watson CJ, Turkenburg JP, et al. Structural integrity of the B24 site in human insulin is important for hormone functionality. J Biol Chem. 2013;288: 10230–40. 10.1074/jbc.M112.448050 PubMed DOI PMC
Pytelková J, Lepšík M, Šanda M, Talacko P, Marešová L, Mareš M. Enzymatic activity and immunoreactivity of Aca s 4, an alpha-amylase allergen from the storage mite Acarus siro. BMC Biochem. 2012;13: 3 10.1186/1471-2091-13-3 PubMed DOI PMC
Kopecký V, Baumruk V. Structure of the ring in drop coating deposited proteins and its implication for Raman spectroscopy of biomolecules. Vib Spectrosc. 2006;42: 184–187.
Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochim Biophys Acta. 2005;1751: 119–39. 10.1016/j.bbapap.2005.06.005 PubMed DOI
Thomas GJ. New structural insights from Raman spectroscopy of proteins and their assemblies. Biopolymers. 2002;67: 214–225. 10.1002/bip.10105 PubMed DOI
Sauer U, Eikmanns BJ. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev. 2005;29: 765–94. 10.1016/j.femsre.2004.11.002 PubMed DOI
Carlson GM, Colombo G, Lardy HA. A vicinal dithiol containing an essential cysteine in phosphoenolpyruvate carboxykinase (guanosine triphosphate) from cytosol of rat liver. Biochemistry. 1978;17: 5329–5338. PubMed
Lewis CT, Seyer JM, Cassell RG, Carlson GM. Identification of vicinal thiols of phosphoenolpyruvate carboxykinase (GTP). J Biol Chem. 1993;268: 1628–36. Available: http://www.ncbi.nlm.nih.gov/pubmed/8420937 PubMed
Makinen AL, Nowak T. A reactive cysteine in avian liver phosphoenolpyruvate carboxykinase. J Biol Chem. 1989;264: 12148–57. Available: http://www.ncbi.nlm.nih.gov/pubmed/2545699 PubMed
Krautwurst H, Encinas MV, Marcus F, Latshaw SP, Kemp RG, Frey P a, et al. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: revised amino acid sequence, site-directed mutagenesis, and microenvironment characteristics of cysteines 365 and 458. Biochemistry. 1995;34: 6382–8. PubMed
Holyoak T, Sullivan SSM, Nowak T. Structural insights into the mechanism of PEPCK catalysis. Biochemistry. 2006;45: 8254–63. 10.1021/bi060269g PubMed DOI
Sullivan SM, Holyoak T. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Biochemistry. 2007;46: 10078–88. 10.1021/bi701038x PubMed DOI
Carlson GM, Holyoak T. Structural insights into the mechanism of phosphoenolpyruvate carboxykinase catalysis. J Biol Chem. 2009;284: 27037–41. 10.1074/jbc.R109.040568 PubMed DOI PMC