Oocyte Ageing in Zebrafish Danio rerio (Hamilton, 1822) and Its Consequence on the Viability and Ploidy Anomalies in the Progeny

. 2021 Mar 22 ; 11 (3) : . [epub] 20210322

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33810200

Fish egg quality can be markedly influenced by the oocyte age after ovulation. In this study, we examined the duration of oocyte ageing in the zebrafish (Danio rerio) and whether prolonged ageing is associated with the incidence of ploidy anomalies in the resulting embryos. Oocytes were incubated in vitro for 6 h post-stripping (HPS) at 26 °C and fertilized at 2-h intervals. Meanwhile, for eggs fertilized immediately after stripping, the fertilization, embryo survival, and hatching rates started at ~80%; these rates decreased to 39%, 24%, and 16%, respectively, for oocytes that had been stored for 4 h (p ˂ 0.05), and there was an almost complete loss of egg viability at 6 HPS. Furthermore, almost 90% of the embryos derived from 6-h aged oocytes died prior to hatching, and all larvae originating from 4- and 6-h aged oocytes showed malformations. The proportion of ploidy abnormal embryos was significantly greater at 4 HPS (18.5%) than at either 0 or 2 HPS (4.7% and 8.8%, respectively). The results revealed that zebrafish oocytes retained their fertilization potential for up to 2 h after stripping at 26 °C and indicated the contribution of post-ovulatory oocyte ageing in the occurrence of ploidy anomalies in the resulting embryos.

Zobrazit více v PubMed

Lubzens E., Young G., Bobe J., Cerda J. Oogenesis in teleosts: How eggs are formed. Gen. Comp. Endocrinol. 2010;165:367–389. doi: 10.1016/j.ygcen.2009.05.022. PubMed DOI

Bobe J., Labbe C. Egg and sperm quality in fish. Gen. Comp. Endocrinol. 2010;165:535–548. doi: 10.1016/j.ygcen.2009.02.011. PubMed DOI

Reading B., Andersen L., Ryu Y.-W., Mushirobira Y., Todo T., Hiramatsu N. Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. Fishes. 2018;3:45. doi: 10.3390/fishes3040045. DOI

Aegerter S., Jalabert B., Bobe J. Large scale real-time PCR analysis of mRNA abundance in rainbow trout eggs in relationship with egg quality and post-ovulatory ageing. Mol. Reprod. Dev. 2005;72:377–385. doi: 10.1002/mrd.20361. PubMed DOI

Samarin A.M., Samarin A.M., Policar T. Cellular and molecular changes associated with fish oocyte ageing. Rev. Aquac. 2019;11:619–630. doi: 10.1111/raq.12249. DOI

Zhang G.M., Gu C.H., Zhang Y.L., Sun H.Y., Qian W.P., Zhou Z.R., Wan Y.J., Jia R.X., Wang L.Z., Wang F. Age-associated changes in gene expression of goat oocytes. Theriogenology. 2013;80:328–336. doi: 10.1016/j.theriogenology.2013.04.019. PubMed DOI

Ma W., Zhang D., Hou Y., Li Y.H., Sun Q.Y., Sun X.F., Wang W.H. Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol. Reprod. 2005;72:373–383. doi: 10.1095/biolreprod.104.030999. PubMed DOI

Ge Z.J., Schatten H., Zhang C.L., Sun Q.Y. Oocyte ageing and epigenetics. Reproduction. 2015;149:R103–R114. doi: 10.1530/REP-14-0242. PubMed DOI PMC

Linhart O., Billard R. Survival of ovulated oocytes of the European catfish (Silurus glanis) after in vivo and in vitro storage or exposure to saline solutions and urine. Aquat. Living Resour. 1995;8:317–322. doi: 10.1051/alr:1995033. DOI

Lahnsteiner F. Morphological, physiological and biochemical parameters characterizing the over-ripening of rainbow trout eggs. Fish Physiol. Biochem. 2000;23:107–118. doi: 10.1023/A:1007839023540. DOI

Linhart O., Kudo S., Billard R., Slechta V., Mikodina E.V. Morphology, Composition and Fertilization of Carp Eggs—A Review. Aquaculture. 1995;129:75–93. doi: 10.1016/0044-8486(94)00230-L. DOI

Samarin A.M., Zarski D., Palinska-Zarska K., Krejszeff S., Blecha M., Kucharczyk D., Policar T. In vitro storage of unfertilized eggs of the Eurasian perch and its effect on egg viability rates and the occurrence of larval malformations. Animal. 2017;11:78–83. doi: 10.1017/S1751731116001361. PubMed DOI

do Nascimento N.F., Lazaro T.M., de Alcantara N.R., Rocha, Senhorini J.A., Dos Santos S.C.A., Nakaghi L.S.O., Yasui G.S. In vivo storage of oocytes leads to lower survival, increased abnormalities and may affect the ploidy status in the yellowtail tetra Astyanax altiparanae. Zygote. 2018;26:471–475. doi: 10.1017/S0967199418000527. PubMed DOI

Aegerter S., Jalabert B. Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2004;231:59–71. doi: 10.1016/j.aquaculture.2003.08.019. DOI

Flajšhans M., Kohlmann K., Ráb P. Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J. Fish Biol. 2007;71:868–876. doi: 10.1111/j.1095-8649.2007.01557.x. DOI

Nomura K., Takeda Y., Unuma T., Morishima K., Tanaka H., Arai K., Ohta H. Post-ovulatory oocyte aging induces spontaneous occurrence of polyploids and mosaics in artificial fertilization of Japanese eel, Anguilla japonica. Aquaculture. 2013;404–405:15–21. doi: 10.1016/j.aquaculture.2013.04.016. DOI

Samarin A.M., Blecha M., Uzhytchak M., Bytyutskyy D., Zarski D., Flajshans M., Policar T. Post-ovulatory and post-stripping oocyte ageing in northern pike, Esox lucius (Linnaeus, 1758), and its effect on egg viability rates and the occurrence of larval malformations and ploidy anomalies. Aquaculture. 2016;450:431–438. doi: 10.1016/j.aquaculture.2015.08.017. DOI

Tarin J.J., Perez-Albala S., Perez-Hoyos S., Cano A. Postovulatory aging of oocytes decreases reproductive fitness and longevity of offspring. Biol. Reprod. 2002;66:495–499. doi: 10.1095/biolreprod66.2.495. PubMed DOI

Salvaggio A., Marino F., Albano M., Pecoraro R., Camiolo G., Tibullo D., Bramanti V., Lombardo B.M., Saccone S., Mazzei V., et al. Toxic Effects of Zinc Chloride on the Bone Development in Danio rerio (Hamilton, 1822) Front. Physiol. 2016:7. doi: 10.3389/fphys.2016.00153. PubMed DOI PMC

Dooley K., Zon L.I. Zebrafish: A model system for the study of human disease. Curr. Opin. Genet. Dev. 2000;10:252–256. doi: 10.1016/S0959-437X(00)00074-5. PubMed DOI

Wagner D.E., Weinreb C., Collins Z.M., Briggs J.A., Megason S.G., Klein A.M. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 2018;360:981–987. doi: 10.1126/science.aar4362. PubMed DOI PMC

Ribas L., Piferrer F. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev. Aquac. 2014;6:209–240. doi: 10.1111/raq.12041. DOI

Kane D.A., Kimmel C.B. The zebrafish midblastula transition. Development. 1993;119:447–456. PubMed

Franěk R., Tichopád T., Fučíková M., Steinbach C., Pšenička M. Production and use of triploid zebrafish for surrogate reproduction. Theriogenology. 2019;140:33–43. doi: 10.1016/j.theriogenology.2019.08.016. PubMed DOI

Fauvel C., Suquet M., Cosson J. Evaluation of fish sperm quality. J. Appl. Ichthyol. 2010;26:636–643. doi: 10.1111/j.1439-0426.2010.01529.x. DOI

Rodina M., Cosson J., Gela D., Linhart O. Kurokura Solution as Immobilizing Medium for Spermatozoa of Tench (Tinca tinca L.) Aquac. Int. 2004;12:119–131. doi: 10.1023/B:AQUI.0000017192.75993.e3. DOI

Pereira A.C., Gomes T., Ferreira Machado M.R., Rocha T.L. The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: From morphological to molecular approach. Environ. Pollut. 2019;252:1841–1853. doi: 10.1016/j.envpol.2019.06.100. PubMed DOI

Samarin A.M., Policar T., Lahnsteiner F. Fish Oocyte Ageing and its Effect on Egg Quality. Rev. Fish. Sci. Aquac. 2015;23:302–314. doi: 10.1080/23308249.2015.1053560. DOI

Sakai N., Burgess S., Hopkins N. Delayed in vitro fertilization of zebrafish eggs in Hank’s saline containing bovine serum albumin. Mol. Mar. Biol. Biotechnol. 1997;6:84–87. PubMed

Cardona-Costa J., Perez-Camps M., Garcia-Ximenez F., Espinos F.J. Effect of gametes aging on their activation and fertilizability in zebrafish (Danio rerio) Zebrafish. 2009;6:93–95. doi: 10.1089/zeb.2008.0578. PubMed DOI

Igarashi H., Takahashi E., Hiroi M., Doi K. Aging-related changes in calcium oscillations in fertilized mouse oocytes. Mol. Reprod. Dev. 1997;48:383–390. doi: 10.1002/(SICI)1098-2795(199711)48:3<383::AID-MRD12>3.0.CO;2-X. PubMed DOI

Takahashi T., Takahashi E., Igarashi H., Tezuka N., Kurachi H. Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol. Reprod. Dev. 2003;66:143–152. doi: 10.1002/mrd.10341. PubMed DOI

Takahashi T., Igarashi H., Kawagoe J., Amita M., Hara S., Kurachi H. Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis. Biol. Reprod. 2009;80:493–502. doi: 10.1095/biolreprod.108.072017. PubMed DOI

Gordo A.C., Rodrigues P., Kurokawa M., Jellerette T., Exley G.E., Warner C., Fissore R. Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol. Reprod. 2002;66:1828–1837. doi: 10.1095/biolreprod66.6.1828. PubMed DOI

Lord T., Aitken R.J. Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction. 2013;146:R217–R227. doi: 10.1530/REP-13-0111. PubMed DOI

Azuma T., Ohta H., Oda S., Muto K., Yada T., Unuma T. Changes in fertility of rainbow trout eggs retained in coelom. Fish. Sci. 2003;69:131–136. doi: 10.1046/j.1444-2906.2003.00597.x. DOI

Samarin A.M., Samarin A.M., Ostbye T.K., Ruyter B., Sampels S., Burkina V., Blecha M., Gela D., Policar T. Alteration of mRNA abundance, oxidation products and antioxidant enzyme activities during oocyte ageing in common carp Cyprinus carpio. PLoS ONE. 2019;14:e0212694. doi: 10.1371/journal.pone.0212694. PubMed DOI PMC

Tinkir M., Memiş D., Cheng Y., Xin M., Rodina M., Gela D., Tučková V., Linhart O. Level of in vitro storage of the European catfish (Silurus glanis L.) eggs at different temperatures. Fish Physiol. Biochem. 2020 doi: 10.1007/s10695-020-00902-9. PubMed DOI

Samarin A.M., Samarin A.M., Blecha M., Kristan J., Policar T. In vitro storage of pikeperch (Sander lucioperca) eggs. Aquac. Int. 2019;27:1037–1044. doi: 10.1007/s10499-019-00380-8. DOI

Rime H., Guitton N., Pineau C., Bonnet E., Bobe J., Jalabert B. Post-ovulatory ageing and egg quality: A proteomic analysis of rainbow trout coelomic fluid. Reprod. Biol. Endocrinol. 2004;2:26. doi: 10.1186/1477-7827-2-26. PubMed DOI PMC

Craik J.C.A., Harvey S.M. Egg Quality in Rainbow-Trout—The Relation between Egg Viability, Selected Aspects of Egg Composition, and Time of Stripping. Aquaculture. 1984;40:115–134. doi: 10.1016/0044-8486(84)90350-8. DOI

Tarin J.J., Perez-Albala S., Cano A. Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update. 2000;6:532–549. doi: 10.1093/humupd/6.6.532. PubMed DOI

Hamatani T., Falco G., Carter M.G., Akutsu H., Stagg C.A., Sharov A.A., Dudekula D.B., VanBuren V., Ko M.S. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 2004;13:2263–2278. doi: 10.1093/hmg/ddh241. PubMed DOI

Dankert D., Demond H., Trapphoff T., Heiligentag M., Rademacher K., Eichenlaub-Ritter U., Horsthemke B., Grummer R. Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes. PLoS ONE. 2014;9:e108907. doi: 10.1371/journal.pone.0108907. PubMed DOI PMC

Pan H., Ma P., Zhu W., Schultz R.M. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev. Biol. 2008;316:397–407. doi: 10.1016/j.ydbio.2008.01.048. PubMed DOI PMC

Legendre M., Otémé Z. Effect of varying latency period on the quantity and quality of ova after hCG-induced ovulation in the African catfish, Heterobranchus longifilis (Teleostei, Clariidae) Aquat. Living Resour. 1995;8:309–316. doi: 10.1051/alr:1995032. DOI

Varkonyi E., Horvath L., Ozouf-Costaz C., Billard R. Cytogenetics and Cell Genetics. Volume 81. Karger; Basel, Switzerland: 1998. The effects of oocyte ageing in Silurus glanis L. p. 139. Allschwilerstrasse 10, CH-4009.

Legendre M., Slembrouck J., Subagja J., Kristanto A.H. Ovulation rate, latency period and ova viability after GnRH-or hCG-induced breeding in the Asian catfish Pangasius hypophthalmus (Siluriformes, Pangasiidae) Aquat. Living Resour. 2000;13:145–151. doi: 10.1016/S0990-7440(00)00148-0. DOI

Bonnet E., Fostier A., Bobe J. Characterization of rainbow trout egg quality: A case study using four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology. 2007;67:786–794. doi: 10.1016/j.theriogenology.2006.10.008. PubMed DOI

Piferrer F., Beaumont A., Falguière J.-C., Flajšhans M., Haffray P., Colombo L. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293:125–156. doi: 10.1016/j.aquaculture.2009.04.036. DOI

Linhart O., Haffray P., Ozouf-Costaz C., Flajšhans M., Vandeputte M. Triploidization of European catfish (Silurus glanis L.) with heat-, cold-, hydrostatic pressure shocks and growth experiment. J. Appl. Ichtyol. 2001;17:247–255. doi: 10.1046/j.1439-0426.2001.00299.x. DOI

Wakayama S., Van Thuan N., Kishigami S., Ohta H., Mizutani E., Hikichi T., Miyake M., Wakayama T. Production of offspring from one-day-old oocytes stored at room temperature. J. Reprod. Dev. 2004;50:627–637. doi: 10.1262/jrd.50.627. PubMed DOI

Mailhes J.B., Young D., London S.N. Postovulatory ageing of mouse oocytes in vivo and premature centromere separation and aneuploidy. Biol. Reprod. 1998;58:1206–1210. doi: 10.1095/biolreprod58.5.1206. PubMed DOI

Igarashi H., Takahashi T., Nagase S. Oocyte aging underlies female reproductive aging: Biological mechanisms and therapeutic strategies. Reprod. Med. Biol. 2015;14:159–169. doi: 10.1007/s12522-015-0209-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...