In vitro post-ovulatory oocyte ageing in grass carp Ctenopharyngodon idella affects H4K12 acetylation pattern and histone acetyltransferase activity
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
38019384
DOI
10.1007/s10695-023-01273-7
PII: 10.1007/s10695-023-01273-7
Knihovny.cz E-resources
- Keywords
- Ctenopharyngodon Idella, Epigenetics, Fertilization, HAT activity, Histone acetylation, Ovulation,
- MeSH
- Acetylation MeSH
- Histone Acetyltransferases * metabolism genetics MeSH
- Histones * metabolism MeSH
- Carps * metabolism MeSH
- Oocytes * MeSH
- Protein Processing, Post-Translational MeSH
- Cellular Senescence MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Histone Acetyltransferases * MeSH
- Histones * MeSH
Delayed fertilization leads to the ageing of post-ovulatory oocytes and reduces the developmental competence of arising embryos. Little information is available about the molecular processes during fish oocyte ageing. The current study investigated the functional consequences of oocyte ageing in grass carp Ctenopharyngodon idella embryos. In addition, the dynamics of selected post-transcriptionally modified histones (acetylation of H3K9, H3K14, H4K5, H4K8, H4K12, and H4K16) were analyzed during oocyte ageing. Ovulated oocytes were aged in vitro for 4 h in the laboratory incubator at 20 °C and studied for selected post-translational modification of histones. In addition, histone acetyltransferase activity was investigated as an important regulator of histone acetylation modification. The results indicated a significant decrease in oocyte fertilizing ability through 1 h of post-ovulatory ageing, and a complete loss of egg fertilizing abilities was detected at 4-h aged oocytes. Furthermore, post-ovulatory oocyte ageing for 1 and 4 h led to decreased levels of H4K12 acetylation. The activity of histone acetyltransferases increased significantly after ageing of the oocytes for 30 h in vitro. This modification may partly contribute to explaining the failures of egg viability and embryo development in the offspring from the aged oocytes. The results are the first to report histone modifications as a crucial epigenetic regulator during oocyte ageing in fish and might also benefit other vertebrates.
CBIO Aarhus University Centre for Circular Bioeconomy 8830 Tjele Denmark
CiFood Centre of Innovative Food Research Aarhus University 8200 Aarhus Denmark
Department of Food Science Aarhus University Agro Food Park 48 8200 Aarhus Denmark
See more in PubMed
Aegerter S, Jalabert B, Bobe J (2004) Messenger RNA stockpile of cyclin B, insulin-like growth factor I, insulin-like growth factor II, insulin-like growth factor receptor Ib, and p53 in the rainbow trout oocyte in relation with developmental competence. Mol Reprod Dev 67(2):127–135. https://doi.org/10.1002/mrd.10384 PubMed DOI
Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395 PubMed DOI PMC
Bozkurt Y, Yavas İ, Gül A, Balcı BA, Çetin NC (2017) Importance of grass carp (Ctenopharyngodon idella) for controlling of aquatic vegetation. Grasses-Benefits, Diversities and Functional Roles 3:29. https://doi.org/10.5772/intechopen.69192 DOI
Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304. https://doi.org/10.1038/nrg2540 PubMed DOI
Chen Y, Shi M, Zhang W, Cheng Y, Wang Y, Xia X-Q (2017) The Grass Carp Genome Database (GCGD): an online platform for genome features and annotations. Database 2017. https://doi.org/10.1093/database/bax051
Cui M-S, Wang X-L, Tang D-W, Zhang J, Liu Y, Zeng S-M (2011) Acetylation of H4K12 in porcine oocytes during in vitro aging: potential role of ooplasmic reactive oxygen species. Theriogenology 75(4):638–646. https://doi.org/10.1016/j.theriogenology.2010.09.031 PubMed DOI
Cunliffe V (2016) Histone modifications in zebrafish development. In: Methods in Cell Biology, vol 135. Elsevier, pp 361–385. https://doi.org/10.1016/bs.mcb.2016.05.005 DOI
Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U et al (2014) Pre-and postovulatory aging of murine oocytes affect the transcript level and poly (A) tail length of maternal effect genes. PLoS One 9(10):e108907. https://doi.org/10.1371/journal.pone.0108907 PubMed DOI PMC
Demond H, Dankert D, Grümmer R, Horsthemke B (2017) Preovulatory oocyte aging in mice affects fertilization rate and embryonic genome activation. bioRxiv 209437. https://doi.org/10.1101/209437
Endo T, Naito K, Aoki F, Kume S, Tojo H (2005) Changes in histone modifications during in vitro maturation of porcine oocytes. Mol Reprod Dev, 2005 71(1):123–128. https://doi.org/10.1002/mrd.20288 DOI
Flajšhans M, Kohlmann K, Rab P (2007) Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J Fish Biol 71(3):868–876. https://doi.org/10.1111/j.1095-8649.2007.01557.x DOI
Gavazzo P, Vergani L, Mascetti C, Nicolini C (1997) Effects of histone acetylation on chromatin structure. J Cell Biochem 64(3):466–475. https://doi.org/10.1002/(SICI)1097-4644(19970301)64:3%3C466::AID-JCB13%3E3.0.CO;2-E PubMed DOI
Ge Z-J, Schatten H, Zhang C-L, Sun Q-Y (2015) Oocyte ageing and epigenetics. Reproduction (Cambridge, England) 149(3):R103. https://doi.org/10.1530/rep-14-0242 PubMed DOI
Gordo AC, Rodrigues P, Kurokawa M, Jellerette T, Exley GE, Warner C, Fissore R (2002) Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol Reprod 66(6):1828–1837. https://doi.org/10.1095/biolreprod66.6.1828 PubMed DOI
Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389(6649):349–352. https://doi.org/10.1038/38664 PubMed DOI
Gu L, Wang Q, Sun Q-Y (2010) Histone modifications during mammalian oocyte maturation: dynamics, regulation and functions. Cell Cycle 9(10):1942–1950. https://doi.org/10.4161/cc.9.10.11599 PubMed DOI
Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA et al (2004) Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 13(19):2263–2278. https://doi.org/10.1093/hmg/ddh241 PubMed DOI
Huang J-C, Yan L-Y, Lei Z-L, Miao Y-L, Shi L-H, Yang J-W et al (2007) Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol Reprod 77(4):666–670. https://doi.org/10.1095/biolreprod.107.062703 PubMed DOI
Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(3):245–254. https://doi.org/10.1038/ng1089 PubMed DOI
Jones LA, Mandrak NE, Cudmore BC (2017) Updated (2003-2015) biological synopsis of grass carp (Ctenopharyngodon idella). Canadian Science Advisory Secretariat
Jukam D, Shariati SAM, Skotheim JM (2017) Zygotic genome activation in vertebrates. Dev Cell 42(4):316–332. https://doi.org/10.1016/j.devcel.2017.07.026 PubMed DOI PMC
Kim JM, Liu H, Tazaki M, Nagata M, Aoki F (2003) Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol, 2003 162(1):37–46. https://doi.org/10.1083/jcb.200303047 DOI
Kosubek A, Klein-Hitpass L, Rademacher K, Horsthemke B, Ryffel GU (2010) Aging of Xenopus tropicalis eggs leads to deadenylation of a specific set of maternal mRNAs and loss of developmental potential. PLoS One 5(10):e13532. https://doi.org/10.1371/journal.pone.0013532 PubMed DOI PMC
Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613. https://doi.org/10.1146/annurev-cellbio-100913-013027 PubMed DOI PMC
Liang X, Ma J, Schatten H, Sun Q (2012) Epigenetic changes associated with oocyte aging. Sci China Life Sci 55:670–676. https://doi.org/10.1007/s11427-012-4354-3 PubMed DOI
Liu N, Wu Y-G, Lan G-C, Sui H-S, Ge L, Wang J-Z, Tan J-H et al (2009) Pyruvate prevents aging of mouse oocytes. Reprod 138(2):223. https://doi.org/10.1530/REP-09-0122 DOI
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039 PubMed DOI PMC
Lord T, Nixon B, Jones KT, Aitken RJ (2013) Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 88(3):61–69. https://doi.org/10.1095/biolreprod.112.106450 DOI
McCauley BS, Dang W (2014) Histone methylation and aging: lessons learned from model systems. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1839(12):1454–1462. https://doi.org/10.1016/j.bbagrm.2014.05.008 PubMed DOI
Migaud H, Bell G, Cabrita E, McAndrew B, Davie A, Bobe J, Carrillo M et al (2013) Gamete quality and broodstock management in temperate fish. Rev Aquac 5(s1):S194–S223. https://doi.org/10.1111/raq.12025 DOI
Perez GI, Tao X-J, Tilly JL (1999) Fragmentation and death (aka apoptosis) of ovulated oocytes. Mol Hum Reprod 5(5):414–420. https://doi.org/10.1093/molehr/5.5.414 PubMed DOI
Peterson CL, Laniel M-A (2004) Histones and histone modifications. Curr Biol 14(14):R546–R551. https://doi.org/10.1016/j.cub.2004.07.007 PubMed DOI
Régnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E, Trouche D et al (2005) CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol 25(10):3967–3981. https://doi.org/10.1128/MCB.25.10.3967-3981.2005 PubMed DOI PMC
Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochimica et Biophysica Acta (BBA)-Gene Reg Mech 1839(8):627–643. https://doi.org/10.1016/j.bbagrm.2014.03.001 DOI
Safarzadenia M, Yazdanparast T, Taati MM, Esfahani HK (2013) Storage of unfertilized eggs of grass carp, Ctenopharyngodon idella, in artificial media. Aquacult , Aquarium, Conserv Legis 6(5):478–485 http://www.bioflux.com.ro/docs/2013.478-485.pdf
Samarin AM, Blecha M, Bytyutskyy D, Policar T (2015a) Post-ovulatory oocyte ageing in pikeperch (Sander lucioperca L.) and its effect on egg viability rates and the occurrence of larval malformations and ploidy anomalies. Turk J Fish Aquat Sci 15(3):429–435. https://doi.org/10.4194/1303-2712-v15_2_29 DOI
Samarin AM, Blecha M, Uzhytchak M, Bytyutskyy D, Zarski D, Flajshans M, Policar T (2016) Post-ovulatory and post-stripping oocyte ageing in northern pike, Esox lucius (Linnaeus, 1758), and its effect on egg viability rates and the occurrence of larval malformations and ploidy anomalies. Aquaculture 450:431–438. https://doi.org/10.1016/j.aquaculture.2015.08.017 DOI
Samarin A, Mohagheghi Samarin A, Østbye T-KK, Ruyter B, Sampels S, Burkina V et al (2019a) Alteration of mRNA abundance, oxidation products and antioxidant enzyme activities during oocyte ageing in common carp Cyprinus carpio. PLoS One 14(2):e0212694. https://doi.org/10.1371/journal.pone.0212694 DOI
Samarin AM, Policar T, Lahnsteiner F (2015b) Fish oocyte ageing and its effect on egg quality. Rev Fish Sci Aquac 23(3):302–314. https://doi.org/10.1080/23308249.2015.1053560 DOI
Samarin AM, Sampels S, Krzyskow A, Burkina V, Kristan J, Gela D et al (2018) Egg oxidation status, antioxidant enzyme activities, lipid classes, fatty acid composition profile and embryo survival rates during in vitro oocyte ageing in tench Tinca tinca (Linnaeus, 1758). Aquac Res 49(6):2305–2316. https://doi.org/10.1111/are.13693 DOI
Samarin AM, Samarin AM, Østbye T-KK, Ruyter B, Sampels S, Burkina V, Policar T et al (2019b) The possible involvement of oxidative stress in the oocyte ageing process in goldfish Carassius auratus (Linnaeus, 1758). Sci Rep 9(1):10469. https://doi.org/10.1038/s41598-019-46895-1 PubMed DOI PMC
Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA (2004) Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 117(19):4449–4459. https://doi.org/10.1242/jcs.01328 PubMed DOI
Sato Y, Hilbert L, Oda H, Wan Y, Heddleston JM, Chew T-L et al (2019) Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 146(19):dev179127. https://doi.org/10.1242/dev.179127
Schulz KN, Harrison MM (2019) Mechanisms regulating zygotic genome activation. Nat Rev Genet 20(4):221–234. https://doi.org/10.1038/s41576-018-0087-x PubMed DOI PMC
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45. https://doi.org/10.1038/47412 PubMed DOI
Takahashi T, Igarashi H, Amita M, Hara S, Kurachi H (2011) Cellular and molecular mechanisms of various types of oocyte aging. Reprod Med Biol 10(4):239–249. https://doi.org/10.1007/s12522-011-0099-0 PubMed DOI PMC
Takahashi T, Igarashi H, Amita M, Hara S, Matsuo K, Kurachi H (2013) Molecular mechanism of poor embryo development in postovulatory aged oocytes: mini review. Obstet Gynaecol 39(10):1431–1439. https://doi.org/10.1111/jog.12111 DOI
Takahashi T, Takahashi E, Igarashi H, Tezuka N, Kurachi H (2003) Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol Reprod Develop: Incorp Gamete Res 66(2):143–152. https://doi.org/10.1002/mrd.10341 DOI
Tarin JJ, Perez-Albala S, Cano A (2000) Consequences on offspring of abnormal function in ageing gametes. Hum Reprod Update 6(6):532–549. https://doi.org/10.1093/humupd/6.6.532 PubMed DOI
Tarín JJ, Pérez-Albalá S, Pérez-Hoyos S, Cano A (2002) Postovulatory aging of oocytes decreases reproductive fitness and longevity of offspring. Biol Reprod 66(2):495–499. https://doi.org/10.1095/biolreprod66.2.495 PubMed DOI
Taylor SC, Posch A (2014) The design of a quantitative western blot experiment. Biomed Res Int 2014(9):361590. https://doi.org/10.1155/2014/361590 PubMed DOI PMC
Tokmakov AA, Sato K-I, Stefanov VE (2018) Postovulatory cell death: why eggs die via apoptosis in biological species with external fertilization. J Reprod Dev 64(1):1–6. https://doi.org/10.1262/jrd.2017-100 PubMed DOI
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T et al (2016) Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 31(1):133–149. https://doi.org/10.1093/humrep/dev279 PubMed DOI
Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22(9):836–845. https://doi.org/10.1002/1521-1878(200009)22:9%3C836::AID-BIES9%3E3.0.CO;2-X PubMed DOI
Valdebenito II, Gallegos PC, Effer BR (2015) Gamete quality in fish: evaluation parameters and determining factors. Zygote 23(2):177–197. https://doi.org/10.1017/S0967199413000506 PubMed DOI
van den Berg IM, Eleveld C, van der Hoeven M, Birnie E, Steegers EA, Galjaard RJ et al (2011) Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. Hum Reprod 26(5):1181–1190. https://doi.org/10.1093/humrep/der030 PubMed DOI
Waghmare SG, Samarin AM, Franěk R, Pšenička M, Policar T, Linhart O, Samarin AM (2021a) Oocyte ageing in zebrafish Danio rerio (Hamilton, 1822) and its consequence on the viability and ploidy anomalies in the progeny. Animals 11(3):912 https://www.mdpi.com/2076-2615/11/3/912 PubMed DOI PMC
Waghmare SG, Samarin AM, Samarin AM, Danielsen M, Møller HS, Policar T et al (2021b) Histone acetylation dynamics during in vivo and in vitro oocyte aging in common carp Cyprinus carpio. Int J Mol Sci 22(11):6036. https://doi.org/10.3390/ijms22116036 PubMed DOI PMC
Wang H, Jo Y-J, Oh JS, Kim N-H (2017) Quercetin delays postovulatory aging of mouse oocytes by regulating SIRT expression and MPF activity. Oncotarget 8(24):38631. https://doi.org/10.18632/oncotarget.16219 PubMed DOI PMC
Wang Y, Lu Y, Zhang Y, Ning Z, Li Y, Zhao Q et al (2015) The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47(6):625–631. https://doi.org/10.1038/ng.3280 PubMed DOI
Xing X, Zhang J, Wu T, Zhang J, Wang Y, Su J, Zhang Y (2021) SIRT1 reduces epigenetic and non-epigenetic changes to maintain the quality of postovulatory aged oocytes in mice. Exp Cell Res 399(2):112421. https://doi.org/10.1016/j.yexcr.2020.112421 PubMed DOI
Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin AJ. Biol Chem 265:17174–17179 DOI
Zhang G-M, Gu C-H, Zhang Y-L, Sun H-Y, Qian W-P, Zhou Z-R et al (2013) Age-associated changes in gene expression of goat oocytes. Theriogenology 80(4):328–336. https://doi.org/10.1016/j.theriogenology.2013.04.019 PubMed DOI
Zhang L, Hou X, Ma R, Moley K, Schedl T, Wang Q (2014) Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J 28(3):1435. https://doi.org/10.1096/fj.13-244111 PubMed DOI PMC
Zhang T, Zhou Y, Li L, Wang H-H, Ma X-S, Qian W-P, et. (2016) SIRT1, 2, 3 protect mouse oocytes from postovulatory aging. Aging (Albany NY) 8(4):685. https://doi.org/10.18632/aging.100911 PubMed DOI
Zlabek A, Linhart O (1987) Short-term storage of non-inseminated and unfertilized ova of the common carp, grass carp and silver carp. Bulletin VURH Vodnany 23:3–11