The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels

. 2025 Jul 25 ; 13 (8) : . [epub] 20250725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40863895

Grantová podpora
LM2023066 Ministry of Education Youth and Sports
LM2023053 Ministry of Education Youth and Sports
SS02030031 Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/18_046/0015586 European Structural and Investments Funds in the frame of Operational Programme Research Development and Education
CZ.02.1.01/0.0/0.0/16_019/0000798 European Regional Development Fund

Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively.

Zobrazit více v PubMed

EEA Air Pollutant Emissions Data Viewer. (Last Updated: 3 July 2015) [(accessed on 15 September 2023)]. Available online: http://www.eea.europa.eu/data-and-maps/data/data-viewers/air-emissions-viewer-lrtap.

European Commission . European Commission Fit for 55 [WWW Document] European Commission; Brussels, Belgium: 2021.

Vicente E.D., Alves C.A. An Overview of Particulate Emissions from Residential Biomass Combustion. Atmos. Res. 2018;199:159–185. doi: 10.1016/j.atmosres.2017.08.027. PubMed DOI

Świsłowski P., Wacławek S., Antos V., Zinicovscaia I., Rajfur M. One Year of Active Moss Biomonitoring in the Identification of PAHs in an Urbanized Area—Prospects and Implications. Environ. Sci. Pollut. Res. 2024;31:38416–38427. doi: 10.1007/s11356-024-33831-8. PubMed DOI PMC

Shen H., Huang Y., Wang R., Zhu D., Li W., Shen G., Wang B., Zhang Y., Chen Y., Lu Y., et al. Global Atmospheric Emissions of Polycyclic Aromatic Hydrocarbons from 1960 to 2008 and Future Predictions. Environ. Sci. Technol. 2013;47:6415–6424. doi: 10.1021/es400857z. PubMed DOI PMC

Kasurinen S., Happo M.S., Rönkkö T.J., Orasche J., Jokiniemi J., Kortelainen M., Tissari J., Zimmermann R., Hirvonen M.R., Jalava P.I. Differences between Co-Cultures and Monocultures in Testing the Toxicity of Particulate Matter Derived from Log Wood and Pellet Combustion. PLoS ONE. 2018;13:e0192453. doi: 10.1371/journal.pone.0192453. PubMed DOI PMC

Tapanainen M., Jalava P.I., Mäki-Paakkanen J., Hakulinen P., Happo M.S., Lamberg H., Ruusunen J., Tissari J., Nuutinen K., Yli-Pirilä P., et al. In Vitro Immunotoxic and Genotoxic Activities of Particles Emitted from Two Different Small-Scale Wood Combustion Appliances. Atmos. Environ. 2011;45:7546–7554. doi: 10.1016/j.atmosenv.2011.03.065. DOI

WHO . Residential Heating with Wood and Coal: Health Impacts and Policy Option in Europe and North America. WHO; Geneva, Switzerland: 2015.

Chen J., Hoek G. Long-Term Exposure to PM and All-Cause and Cause-Specific Mortality: A Systematic Review and Meta-Analysis. Environ. Int. 2020;143:105974. doi: 10.1016/j.envint.2020.105974. PubMed DOI

Lu F., Xu D., Cheng Y., Dong S., Guo C., Jiang X., Zheng X. Systematic Review and Meta-Analysis of the Adverse Health Effects of Ambient PM2.5 and PM10 Pollution in the Chinese Population. Environ. Res. 2015;136:196–204. doi: 10.1016/j.envres.2014.06.029. PubMed DOI

Jalava P.I., Happo M.S., Kelz J., Brunner T., Hakulinen P., Mäki-Paakkanen J., Hukkanen A., Jokiniemi J., Obernberger I., Hirvonen M.R. Invitro Toxicological Characterization of Particulate Emissions from Residential Biomass Heating Systems Based on Old and New Technologies. Atmos. Environ. 2012;50:24–35. doi: 10.1016/j.atmosenv.2012.01.009. DOI

Tapanainen M., Jalava P.I., Mäki-Paakkanen J., Hakulinen P., Lamberg H., Ruusunen J., Tissari J., Jokiniemi J., Hirvonen M.R. Efficiency of Log Wood Combustion Affects the Toxicological and Chemical Properties of Emission Particles. Inhal. Toxicol. 2012;24:343–355. doi: 10.3109/08958378.2012.671858. PubMed DOI

Sun J., Shen Z., Zeng Y., Niu X., Wang J., Cao J., Gong X., Xu H., Wang T., Liu H., et al. Characterization and Cytotoxicity of PAHs in PM2.5 Emitted from Residential Solid Fuel Burning in the Guanzhong Plain, China. Environ. Pollut. 2018;241:359–368. doi: 10.1016/j.envpol.2018.05.076. PubMed DOI

Canha N., Lopes I., Vicente E.D., Vicente A.M., Bandowe B.A.M., Almeida S.M., Alves C.A. Mutagenicity Assessment of Aerosols in Emissions from Domestic Combustion Processes. Environ. Sci. Pollut. Res. 2016;23:10799–10807. doi: 10.1007/s11356-016-6292-2. PubMed DOI

Happo M.S., Uski O., Jalava P.I., Kelz J., Brunner T., Hakulinen P., Mäki-Paakkanen J., Kosma V.M., Jokiniemi J., Obernberger I., et al. Pulmonary Inflammation and Tissue Damage in the Mouse Lung after Exposure to PM Samples from Biomass Heating Appliances of Old and Modern Technologies. Sci. Total Environ. 2013;443:256–266. doi: 10.1016/j.scitotenv.2012.11.004. PubMed DOI

Leskinen J., Tissari J., Uski O., Virén A., Torvela T., Kaivosoja T., Lamberg H., Nuutinen I., Kettunen T., Joutsensaari J., et al. Fine Particle Emissions in Three Different Combustion Conditions of a Wood Chip-Fired Appliance—Particulate Physico-Chemical Properties and Induced Cell Death. Atmos. Environ. 2014;86:129–139. doi: 10.1016/j.atmosenv.2013.12.012. DOI

Uski O., Jalava P.I., Happo M.S., Leskinen J., Sippula O., Tissari J., Mäki-Paakkanen J., Jokiniemi J., Hirvonen M.R. Different Toxic Mechanisms Are Activated by Emission PM Depending on Combustion Efficiency. Atmos. Environ. 2014;89:623–632. doi: 10.1016/j.atmosenv.2014.02.036. DOI

Jalava P.I., Salonen R.O., Nuutinen K., Pennanen A.S., Happo M.S., Tissari J., Frey A., Hillamo R., Jokiniemi J., Hirvonen M.R. Effect of Combustion Condition on Cytotoxic and Inflammatory Activity of Residential Wood Combustion Particles. Atmos. Environ. 2010;44:1691–1698. doi: 10.1016/j.atmosenv.2009.12.034. DOI

Vicente E.D., Figueiredo D., Alves C. Toxicity of Particulate Emissions from Residential Biomass Combustion: An Overview of in Vitro Studies Using Cell Models. Sci. Total Environ. 2024;927:171999. doi: 10.1016/j.scitotenv.2024.171999. PubMed DOI

Vicente E.D., Calvo A.I., Sainnokhoi T.A., Kováts N., de la Campa A.S., de la Rosa J., Oduber F., Nunes T., Fraile R., Tomé M., et al. Indoor PM from Residential Coal Combustion: Levels, Chemical Composition, and Toxicity. Sci. Total Environ. 2024;918:170598. doi: 10.1016/j.scitotenv.2024.170598. PubMed DOI

Ihantola T., Hirvonen M., Ihalainen M., Hakkarainen H., Sippula O., Tissari J., Bauer S., Di S., Rastak N., Hartikainen A., et al. Genotoxic and Inflammatory Effects of Spruce and Brown Coal Briquettes Combustion Aerosols on Lung Cells at the Air-Liquid Interface. Sci. Total Environ. 2022;806:150489. doi: 10.1016/j.scitotenv.2021.150489. PubMed DOI

Křůmal K., Mikuška P., Horák J., Hopan F., Krpec K. Comparison of Emissions of Gaseous and Particulate Pollutants from the Combustion of Biomass and Coal in Modern and Old-Type Boilers Used for Residential Heating in the Czech Republic, Central Europe. Chemosphere. 2019;229:51–59. doi: 10.1016/j.chemosphere.2019.04.137. PubMed DOI

Horák J., Hopan F., Kremer J., Kuboňová L., Polcar L., Molchanov O., Ryšavý J., Krpec K., Kubesa P., Dej M., et al. Real Measurement of Carbon Monoxide, Total Suspended Particulate, and Thermal Efficiency in Modern Biomass Household Boilers. Biomass Convers. Biorefin. 2022;12:4463–4472. doi: 10.1007/s13399-022-02657-0. DOI

Heating Boilers—Part 5: Heating Boilers for Solid Fuels, Hand and Automatically Stocked, Nominal Heat Output of up to 500 kW—Terminology, Requirements, Testing and Marking. iTeh Inc.; San Francisco, CO, USA: 1999.

Heating Boilers—Part 5: Heating Boilers for Solid Fuels, Manually and Automatically Stoked, Nominal Heat Output of up to 500 KW—Terminology, Requirements, Testing and Marking. iTeh Inc.; San Francisco, CO, USA: 2022.

Solid Biofuels—Fuel Specifications and Classes Part 2: Graded Wood Pellets. ISO; Geneva, Switzerland: 2021. pp. 1–20.

Stationary Source Emissions—Determination of the Mass Concentration of PCDDs/PCDFs and Dioxin-like PCBs. Volume EN 1948:3. iTeh Inc.; San Francisco, CO, USA: 2006. pp. 1–40.

Test Method 3500C: Organic Extraction and Sample Preparation. EPA; Washington, DC, USA: 2007.

Midwest Research Institute Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air.—Second Edition. EPA; Washington, DC, USA: 1999.

Horák J., Laciok V., Krpec K., Hopan F., Dej M., Kubesa P., Ryšavý J., Molchanov O., Kuboňová L. Influence of the Type and Output of Domestic Hot-Water Boilers and Wood Moisture on the Production of Fine and Ultrafine Particulate Matter. Atmos. Environ. 2020;229:117437. doi: 10.1016/j.atmosenv.2020.117437. DOI

Solid Mineral Fuels—Determination of Moisture. ČSN; Montreal, MTL, Canada: 2004.

Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO; Geneva, Switzerland: 2015.

Solid Mineral Fuels—Determination of Ash. ISO; Geneva, Switzerland: 2010.

Solid Biofuels—Determination of Ash Content. ISO; Geneva, Switzerland: 2015.

Solid Mineral Fuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrument Method. ISO; Geneva, Switzerland: 2010.

Solid Mineral Fuels—Determination of Sulfur by IR Spectrometry. ISO; Geneva, Switzerland: 2006.

Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. ISO; Geneva, Switzerland: 2016.

Topinka J., Hovorka J., Milcova A., Schmuczerova J., Krouzek J., Rossner P., Sram R.J. An Acellular Assay to Assess the Genotoxicity of Complex Mixtures of Organic Pollutants Bound on Size Segregated Aerosol. Part I: DNA Adducts. Toxicol. Lett. 2010;198:304–311. doi: 10.1016/j.toxlet.2010.06.016. PubMed DOI

Smith W.A., Arif J.M., Gupta R.C. Effect of Cancer Chemopreventive Agents on Microsome-Mediated DNA Adduction of the Breast Carcinogen Dibenzo[a,l]Pyrene. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 1998;412:307–314. doi: 10.1016/S1383-5718(97)00203-9. PubMed DOI

Reddy M.V., Randerath K. Nuclease P1-Mediated Enhancement of Sensitivity of 32 P-Postlabeling Test for Structurally Diverse DNA Adducts. Carcinogenesis. 1986;7:1543–1551. doi: 10.1093/carcin/7.9.1543. PubMed DOI

Phillips D.H., Castegnaro M. Standardization and Validation of DNA Adduct Postlabelling Methods: Report of Interlaboratory Trials and Production of Recommended Protocols. Mutagenesis. 1999;14:301–315. doi: 10.1093/mutage/14.3.301. PubMed DOI

Rossner P., Milcova A., Libalova H., Novakova Z., Topinka J., Balascak I., Sram R.J. Biomarkers of Exposure to Tobacco Smoke and Environmental Pollutants in Mothers and Their Transplacental Transfer to the Foetus. Part II. Oxidative Damage. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2009;669:20–26. doi: 10.1016/j.mrfmmm.2009.04.010. PubMed DOI

CHMI Air Pollution Limit Values. [(accessed on 28 November 2024)]. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/info/limity_GB.html.

Horak J., Kubonova L., Krpec K., Hopan F., Kubesa P., Motyka O., Laciok V., Dej M., Ochodek T., Placha D. PAH Emissions from Old and New Types of Domestic Hot Water Boilers. Environ. Pollut. 2017;225:31–39. doi: 10.1016/j.envpol.2017.03.034. PubMed DOI

Hinds W.C. Aerosol Technology-Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 1998.

US EPA Particle Pollution Exposure. [(accessed on 1 June 2023)]; Available online: https://www.epa.gov/pmcourse/particle-pollution-exposure.

Yang M., Guo Y.M., Bloom M.S., Dharmagee S.C., Morawska L., Heinrich J., Jalaludin B., Markevychd I., Knibbsf L.D., Lin S., et al. Is PM1 Similar to PM2.5? A New Insight into the Association of PM1 and PM2.5 with Children’s Lung Function. Environ. Int. 2020;145:106092. doi: 10.1016/j.envint.2020.106092. PubMed DOI

Liu R.-Q., Guo Y., Bloom M.S., Yang B.-Y., Markevych I., Dharmage S., Jalava P., Knibbs L., Lin S., Morawska L., et al. Differential Patterns of Association between PM1 and PM2.5 with Symptoms of Attention Deficit Hyperactivity Disorder. Nat. Ment. Heal. 2023;1:402–409. doi: 10.1038/s44220-023-00065-5. DOI

Hansson A., Rankin G., Uski O., Friberg M., Pourazar J., Lindgren R., López N.G., Boman C., Sandström T., Behndig A., et al. Reduced Bronchoalveolar Macrophage Phagocytosis and Cytotoxic Effects after Controlled Short—Term Exposure to Wood Smoke in Healthy Humans. Part. Fibre Toxicol. 2023;20:30. doi: 10.1186/s12989-023-00541-x. PubMed DOI PMC

Chun H.K., Leung C., Wen S.W., McDonald J., Shin H.H. Maternal Exposure to Air Pollution and Risk of Autism in Children: A Systematic Review and Meta-Analysis. Environ. Pollut. 2020;256:113307. doi: 10.1016/j.envpol.2019.113307. PubMed DOI

Bo Y., Chang L.Y., Guo C., Lin C., Lau A.K.H., Tam T., Yeoh E.K., Lao X.Q. Associations of Reduced Ambient PM2.5 Level with Lower Plasma Glucose Concentration and Decreased Risk of Type 2 Diabetes in Adults: A Longitudinal Cohort Study. Am. J. Epidemiol. 2021;190:2148–2157. doi: 10.1093/aje/kwab159. PubMed DOI

Shen G. Mutagenicity of Particle Emissions from Solid Fuel Cookstoves: A Literature Review and Research Perspective. Environ. Res. 2017;156:761–769. doi: 10.1016/j.envres.2017.05.001. PubMed DOI

Kasurinen S., Jalava P.I., Happo M.S., Sippula O., Uski O., Koponen H., Orasche J., Zimmermann R., Jokiniemi J., Hirvonen M.-R. Particulate Emissions from the Combustion of Birch, Beech, and Spruce Logs Cause Different Cytotoxic Responses in A549 Cells. Environ. Toxicol. 2017;32:1487–1499. doi: 10.1002/tox.22369. PubMed DOI

Marabini L., Ozgen S., Turacchi S., Aminti S., Arnaboldi F., Lonati G., Fermo P., Corbella L., Valli G., Bernardoni V., et al. Ultrafine Particles (UFPs) from Domestic Wood Stoves: Genotoxicity in Human Lung Carcinoma A549 Cells. Mutat. Res.—Genet. Toxicol. Environ. Mutagen. 2017;820:39–46. doi: 10.1016/j.mrgentox.2017.06.001. PubMed DOI

Arif A.T., Maschowski C., Garra P., Garcia-Käufer M., Petithory T., Trouvé G., Dieterlen A., Mersch-Sundermann V., Khanaqa P., Nazarenko I., et al. Cytotoxic and Genotoxic Responses of Human Lung Cells to Combustion Smoke Particles of Miscanthus Straw, Softwood and Beech Wood Chips. Atmos. Environ. 2017;163:138–154. doi: 10.1016/j.atmosenv.2017.05.019. PubMed DOI PMC

Dilger M., Orasche J., Zimmermann R., Paur H.R., Diabaté S., Weiss C. Toxicity of Wood Smoke Particles in Human A549 Lung Epithelial Cells: The Role of PAHs, Soot and Zinc. Arch. Toxicol. 2016;90:3029–3044. doi: 10.1007/s00204-016-1659-1. PubMed DOI

Huang B., Liu M., Bi X., Chaemfa C., Ren Z., Wang X., Sheng G., Fu J. Phase Distribution, Sources and Risk Assessment of PAHs, NPAHs and OPAHs in a Rural Site of Pearl River Delta Region, China. Atmos. Pollut. Res. 2014;5:210–218. doi: 10.5094/APR.2014.026. DOI

Lammel G., Kitanovski Z., Kukučka P., Novák J., Arangio A.M., Codling G.P., Filippi A., Hovorka J., Kuta J., Leoni C., et al. Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Ambient Air—Levels, Phase Partitioning, Mass Size Distributions, and Inhalation Bioaccessibility. Environ. Sci. Technol. 2020;54:2615–2625. doi: 10.1021/acs.est.9b06820. PubMed DOI PMC

Misaki K., Takamura-Enya T., Ogawa H., Takamori K., Yanagida M. Tumour-Promoting Activity of Polycyclic Aromatic Hydrocarbons and Their Oxygenated or Nitrated Derivatives. Mutagenesis. 2016;31:205–213. doi: 10.1093/mutage/gev076. PubMed DOI

Musa B.A., Meusel H. Nitrated Polycyclic Aromatic Hydrocarbons (Nitro-PAHs) in the Environment—A Review. Sci. Total Environ. 2017;581:237–257. doi: 10.1016/j.scitotenv.2016.12.115. PubMed DOI

Bolton J.L., Trush M.A., Penning T.M., Dryhurst G., Monks T.J. Role of Quinones in Toxicology. Chem. Res. Toxicol. 2000;13:135–160. doi: 10.1021/tx9902082. PubMed DOI

Rossner P., Strapacova S., Stolcpartova J., Schmuczerova J., Milcova A., Neca J., Vlkova V., Brzicova T., Machala M., Topinka J. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549) Int. J. Mol. Sci. 2016;17:1393. doi: 10.3390/ijms17091393. PubMed DOI PMC

Monedero E., Collado R., Villanueva F., Borjabad E., Ramos R., Jos J. Particulate-Bound PAHs, Nitro and Oxy-PAHs from Small Scale Boilers Fueled with Non-Woody Biomass. Atmos. Res. 2025;316:107954. doi: 10.1016/j.atmosres.2025.107954. DOI

Libalova H., Zavodna T., Elzeinova F., Barosova H., Cervena T., Milcova A., Vankova J., Paradeisi F., Vojtisek-Lom M., Sikorova J., et al. The Genotoxicity of Organic Extracts from Particulate Emissions Produced by Neat Gasoline (E0) and a Gasoline–Ethanol Blend (E15) in BEAS-2B Cells. J. Xenobiotics. 2024;14:1–14. doi: 10.3390/jox14010001. PubMed DOI PMC

Venturini E., Vassura I., Zanetti C., Pizzi A., Toscano G., Passarini F. Evaluation of Non-Steady State Condition Contribution to the Total Emissions of Residential Wood Pellet Stove. Energy. 2015;88:650–657. doi: 10.1016/j.energy.2015.05.105. DOI

Křůmal K., Mikuška P., Horák J., Jaroch M., Hopan F., Kuboňová L. Gaseous and Particulate Emissions from the Combustion of Hard and Soft Wood for Household Heating: Influence of Boiler Type and Heat Output. Atmos. Pollut. Res. 2023;14:101801. doi: 10.1016/j.apr.2023.101801. DOI

Niu X., Liu X., Zhang B., Zhang Q., Xu H., Zhang H., Sun J., Ho K. Health Benefits from Substituting Raw Biomass Fuels for Charcoal and Briquette Fuels: In Vitro Toxicity Analysis. Sci. Total Environ. 2023;866:161332. doi: 10.1016/j.scitotenv.2022.161332. PubMed DOI

Rajfur M., Zinicovscaia I., Yushin N., Świsłowski P., Wacławek M. Moss-Bag Technique as an Approach to Monitor Elemental Concentration Indoors. Environ. Res. 2023;238:117137. doi: 10.1016/j.envres.2023.117137. PubMed DOI

Shao L., Hou C., Geng C., Liu J., Hu Y., Wang J., Jones T., Zhao C., BéruBé K. The Oxidative Potential of PM10 from Coal, Briquettes and Wood Charcoal Burnt in an Experimental Domestic Stove. Atmos. Environ. 2016;127:372–381. doi: 10.1016/j.atmosenv.2015.12.007. DOI

Han Y., Chen Y., Feng Y., Song W., Cao F., Zhang Y., Li Q., Yang X., Chen J. Different Formation Mechanisms of PAH during Wood and Coal Combustion under Different Temperatures. Atmos. Environ. 2020;222:117084. doi: 10.1016/j.atmosenv.2019.117084. DOI

CZSO Spotřeba Paliv A Energií V Domácnostech. [(accessed on 1 July 2023)]; Available online: https://csu.gov.cz/docs/107508/a4c376d2-6e77-df77-26cd-f9394bed3eca/15018922.pdf?version=1.0.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...