One year of active moss biomonitoring in the identification of PAHs in an urbanized area-prospects and implications

. 2024 Jun ; 31 (26) : 38416-38427. [epub] 20240528

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38802616
Odkazy

PubMed 38802616
PubMed Central PMC11189310
DOI 10.1007/s11356-024-33831-8
PII: 10.1007/s11356-024-33831-8
Knihovny.cz E-zdroje

Classical monitoring of air pollution provides information on environmental quality but involves high costs. An alternative to this method is the use of bioindicators. The purpose of our work was to evaluate atmospheric aerosol pollution by selected polycyclic aromatic hydrocarbons conducted as part of annual active biomonitoring ("moss-bag" technique) with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. The gas chromatography-mass spectrometry (GC-MS) was utilized to determine certain 13 polycyclic aromatic hydrocarbons (PAHs). Three seasonal variations in PAH concentrations have been observed as a result of the study. A fire on the toilet paper plant caused an increase of five new compounds: benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), indeno(1.2.3)-cd_pyrene (IP), dibenzo(a.h)anthracene (Dah), and benzo(g.h.i)perylene (Bghi) in proximity after 8 months of exposure compared to previous months. The effect of meteorological conditions on the deposition of PAHs (mainly wind direction) in mosses was confirmed by principal component analysis (PCA). Dicranum polysetum moss accumulated on average 26.5% more PAHs than the other species, which allows considering its broader use in active biomonitoring. The "moss-bag" technique demonstrates its feasibility in assessing the source of PAH air pollution in a long-term study. It is recommended to use this biological method as a valuable tool in air quality monitoring.

Zobrazit více v PubMed

Abad E, Abalos M, Fiedler H. Air monitoring with passive samplers for dioxin-like persistent organic pollutants in developing countries (2017–2019) Chemosphere. 2022;287:131931. doi: 10.1016/j.chemosphere.2021.131931. PubMed DOI

Al-Alam J, Fajloun Z, Chbani A, Millet M. The use of conifer needles as biomonitor candidates for the study of temporal air pollution variation in the Strasbourg region. Chemosphere. 2017;168:1411–1421. doi: 10.1016/j.chemosphere.2016.11.103. PubMed DOI

Albuquerque M, Coutinho M, Borrego C. Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. Sci Total Environ. 2016;543:439–448. doi: 10.1016/j.scitotenv.2015.11.064. PubMed DOI

Ares A, Aboal JR, Carballeira A, et al. Moss bag biomonitoring: a methodological review. Sci Total Environ. 2012;432:143–158. doi: 10.1016/j.scitotenv.2012.05.087. PubMed DOI

Ares A, Fernández JA, Carballeira A, Aboal JR. Towards the methodological optimization of the moss bag technique in terms of contaminants concentrations and replicability values. Atmos Environ. 2014;94:496–507. doi: 10.1016/j.atmosenv.2014.05.066. DOI

Bai X, Wei J, Ren Y, et al. Pollution characteristics and health risk assessment of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons during heating season in Beijing. J Environ Sci. 2023;123:169–182. doi: 10.1016/j.jes.2022.02.047. PubMed DOI

Boquete MT, Aboal JR, Carballeira A, Fernández JA. Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmos Environ. 2014;86:28–34. doi: 10.1016/j.atmosenv.2013.12.039. DOI

Boquete MT, Aboal JR, Carballeira A, Fernández JA. Do mosses exist outside of Europe? A biomonitoring reflection. Sci Total Environ. 2017;593–594:567–570. doi: 10.1016/j.scitotenv.2017.03.196. PubMed DOI

Capozzi F, Di Palma A, Adamo P, et al. Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves. Atmos Environ. 2017;150:45–54. doi: 10.1016/j.atmosenv.2016.11.046. DOI

Capozzi F, Sorrentino MC, Di Palma A, et al. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags. Ecol Indic. 2020;108:105727. doi: 10.1016/j.ecolind.2019.105727. DOI

Capozzi F, Adamo P, Spagnuolo V, Giordano S. Field comparison between moss and lichen PAHs uptake abilities based on deposition fluxes and diagnostic ratios. Ecol Indic. 2021;120:106954. doi: 10.1016/j.ecolind.2020.106954. DOI

Carrieri V, Fernández JÁ, Aboal JR, et al. Accumulation of polycyclic aromatic hydrocarbons in the devitalized aquatic moss Fontinalis antipyretica: from laboratory to field conditions. J Environ Qual. 2021;50:1196–1206. doi: 10.1002/jeq2.20267. PubMed DOI

Chen SJ, Bin SuH, Chang JE, et al. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmos Environ. 2007;41:1209–1220. doi: 10.1016/j.atmosenv.2006.09.041. DOI

Chen YE, Cui JM, Yang JC, et al. Biomonitoring heavy metal contaminations by moss visible parameters. J Hazard Mater. 2015;296:201–209. doi: 10.1016/j.jhazmat.2015.04.060. PubMed DOI

Chief Inspectorate of Environmental Protection (2023) Annual assessment of air quality in the Swietokrzyskie Voivodeship. Voivodship Report for 2022. Kielce

Choi SD. Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire. Sci Total Environ. 2014;470–471:1441–1449. doi: 10.1016/j.scitotenv.2013.07.100. PubMed DOI

Colabuono FI, Taniguchi S, Cipro CVZ, et al. Persistent organic pollutants and polycyclic aromatic hydrocarbons in mosses after fire at the Brazilian Antarctic Station. Mar Pollut Bull. 2015;93:266–269. doi: 10.1016/j.marpolbul.2015.01.018. PubMed DOI

Concha-Graña E, Piñeiro-Iglesias M, Muniategui-Lorenzo S, et al. Proposal of a procedure for the analysis of atmospheric polycyclic aromatic hydrocarbons in mosses. Talanta. 2015;134:239–246. doi: 10.1016/j.talanta.2014.11.012. PubMed DOI

Cowden P, Aherne J. Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmos Environ. 2019;201:84–91. doi: 10.1016/j.atmosenv.2018.12.022. DOI

De Nicola F, Murena F, Costagliola MA, et al. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon. Environ Sci Pollut Res. 2013;20:4969–4979. doi: 10.1007/s11356-012-1456-1. PubMed DOI

Dołęgowska S, Gałuszka A, Migaszewski ZM. Significance of the long-term biomonitoring studies for understanding the impact of pollutants on the environment based on a synthesis of 25-year biomonitoring in the Holy Cross Mountains, Poland. Environ Sci Pollut Res. 2021;28:10413–10435. doi: 10.1007/s11356-020-11817-6. PubMed DOI

Dolegowska S, Migaszewski ZM. PAH concentrations in the moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland) Ecotoxicol Environ Saf. 2011;74:1636–1644. doi: 10.1016/j.ecoenv.2011.05.011. PubMed DOI

Dron J, Ratier A, Austruy A, et al. Effects of meteorological conditions and topography on the bioaccumulation of PAHs and metal elements by native lichen (Xanthoria parietina) J Environ Sci (China) 2021;109:193–205. doi: 10.1016/j.jes.2021.03.045. PubMed DOI

Foan L, Domercq M, Bermejo R, et al. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study. Chemosphere. 2015;119:452–458. doi: 10.1016/j.chemosphere.2014.06.071. PubMed DOI

Gałuszka A. Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from different forest communities: a case study, south-central Poland. Chemosphere. 2007;67:1415–1422. doi: 10.1016/j.chemosphere.2006.10.010. PubMed DOI

Gao G, Zeng H, Zhou Q. Biomonitoring atmospheric pollution of polycyclic aromatic hydrocarbons using mosses. Atmosphere (basel) 2023;14:1–16. PubMed

Gómez-Arroyo S, Zavala-Sánchez MÁ, Alonso-Murillo CD, et al. Moss (Hypnum amabile) as biomonitor of genotoxic damage and as bioaccumulator of atmospheric pollutants at five different sites of Mexico City and metropolitan area. Environ Sci Pollut Res. 2020 doi: 10.1007/s11356-020-11441-4. PubMed DOI

ICP Vegetation (2020) Heavy metals, nitrogen and POPs in European mosses: 2020 Survey. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf. Accessed 28 Oct 2023

Ihunwo OC, Shahabinia AR, Udo KS, et al. Distribution of polycyclic aromatic hydrocarbons in Woji Creek, in the Niger Delta. Environ Res Commun. 2019;1:125001. doi: 10.1088/2515-7620/ab50f2. DOI

Jayalath KG, Deeyamulla MP, de Silva RCL. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) around two metropolitan areas in sri lanka using moss as a biomonitor. Pollut Res. 2020;39:626–631.

Jesus F, Pereira JL, Campos I, et al (2022) A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Sci Total Environ 820. 10.1016/j.scitotenv.2022.153282 PubMed

Jin R, Bu D, Liu G, et al. New classes of organic pollutants in the remote continental environment – chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. Environ Int. 2020;137:105574. doi: 10.1016/j.envint.2020.105574. PubMed DOI

Jovan SE, Monleon VJ, Donovan GH, et al. Small-scale distributions of polycyclic aromatic hydrocarbons in urban areas using geospatial modeling: a case study using the moss Orthotrichum lyellii in Portland, Oregon, U.S.A. Atmos Environ. 2021;256:118433. doi: 10.1016/j.atmosenv.2021.118433. DOI

Krakovská AS, Svozilík V, Zinicovscaia I, et al. Analysis of spatial data from moss biomonitoring in czech-polish border. Atmosphere (basel) 2020;11:1–26. doi: 10.3390/atmos11111237. DOI

Krzyszczak A, Czech B (2021) Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Sci Total Environ 788. 10.1016/j.scitotenv.2021.147738 PubMed

Lazo P, Kika A, Qarri F, et al. Air quality assessment by moss biomonitoring and trace metals atmospheric deposition. Aerosol Air Qual Res. 2022;22:1–13. doi: 10.4209/aaqr.220008. DOI

Li Z, Cao Y, Qin H, et al. Integration of chemical and biological methods: a case study of polycyclic aromatic hydrocarbons pollution monitoring in Shandong Peninsula, China. J Environ Sci. 2022;111:24–37. doi: 10.1016/J.JES.2021.02.025. PubMed DOI

Lin Y, Liu L, Cai M, et al. Isolating different natural and anthropogenic PAHs in the sediments from the northern Bering-Chukchi margin: implications for transport processes in a warming Arctic. Sci Total Environ. 2020;736:139608. doi: 10.1016/j.scitotenv.2020.139608. PubMed DOI

Meteoblue (2023) Historical climate and weather data for Krasocin. https://www.meteoblue.com/pl/pogoda/historyclimate/climatemodelled/krasocin_polska_767604. Accessed 6 Mar 2023

Milićević T, Aničić Urošević M, Vuković G, et al. Assessment of species-specific and temporal variations of major, trace and rare earth elements in vineyard ambient using moss bags. Ecotoxicol Environ Saf. 2017;144:208–215. doi: 10.1016/j.ecoenv.2017.06.028. PubMed DOI

The Minister of Environment of the Republic of Poland (2014) Regulation of the Minister of Environment of October 9, 2014 on the protection of plant species. Available online: https://dziennikustaw.gov.pl/DU/rok/2014/pozycja/1409. Accessed 28 Oct 2023

Mukhopadhyay S, Dutta R, Das P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. Chemosphere. 2020;251:126441. doi: 10.1016/j.chemosphere.2020.126441. PubMed DOI

Przybytniowski JW, Dziekański P. Synthetic measurement used as assessment of spatial disparities of the natural environment. Zesz Nauk Uniw Przyr w Siedlcach Ser Adm i Zarządzanie. 2020;49:89–98. doi: 10.34739/zn.2019.49.10. DOI

Rey-Salgueiro L, Martínez-Carballo E, García-Falcón MS, Simal-Gándara J. Effects of a chemical company fire on the occurrence of polycyclic aromatic hydrocarbons in plant foods. Food Chem. 2008;108:347–353. doi: 10.1016/j.foodchem.2007.10.042. PubMed DOI

Saitanis CJ, Frontasyeva MV, Steinnes E, et al. Spatiotemporal distribution of airborne elements monitored with the moss bags technique in the Greater Thriasion Plain, Attica, Greece. Environ Monit Assess. 2013;185:955–968. doi: 10.1007/s10661-012-2606-0. PubMed DOI

Schreiberová M, Vlasáková L, Vlček O, et al. Benzo[a]pyrene in the ambient air in the Czech Republic: emission sources, current and long-term monitoring analysis and human exposure. Atmosphere (basel) 2020;11:1–30. doi: 10.3390/ATMOS11090955. DOI

Spagnuolo V, Figlioli F, De Nicola F, et al. Tracking the route of phenanthrene uptake in mosses: an experimental trial. Sci Total Environ. 2017;575:1066–1073. doi: 10.1016/j.scitotenv.2016.09.174. PubMed DOI

Sucharová J, Holá M. PAH and PCB determination of the concentration gradient in moss Pleurozium schreberi near a highway, and seasonal variability at the background reference site. Int J Environ Anal Chem. 2014;94:712–727. doi: 10.1080/03067319.2014.900675. DOI

Sulistiyorini D, Walgraeve C, Van Langenhove H. Biomonitoring of polycyclic aromatic hydrocarbons in the ambient air using plants: a review. Springer Proc Phys. 2022;275:457–494. doi: 10.1007/978-981-19-0308-3_38/COVER. DOI

Sun K, Song Y, He F, et al. A review of human and animals exposure to polycyclic aromatic hydrocarbons: health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ. 2021;773:145403. doi: 10.1016/j.scitotenv.2021.145403. PubMed DOI

Świsłowski P, Kosior G, Rajfur M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res. 2021;28:10068–10076. doi: 10.1007/s11356-020-11484-7. PubMed DOI PMC

Świsłowski P, Nowak A, Rajfur M. The influence of environmental conditions on the lifespan of mosses under long-term active biomonitoring. Atmos Pollut Res. 2021;12:101203. doi: 10.1016/j.apr.2021.101203. DOI

Świsłowski P, Nowak A, Rajfur M. Is your moss alive during active biomonitoring study? Plants. 2021;10:1–14. doi: 10.3390/plants10112389. PubMed DOI PMC

Świsłowski P, Ziembik Z, Rajfur M. Air quality during new year’s eve: a biomonitoring study with moss. Atmosphere (basel) 2021;12:1–13. doi: 10.3390/atmos12080975. PubMed DOI

Świsłowski P, Nowak A, Rajfur M. Comparison of exposure techniques and vitality assessment of mosses in active biomonitoring for their suitability in assessing heavy metal pollution in atmospheric aerosol. Environ Toxicol Chem. 2022;41:1429–1438. doi: 10.1002/etc.5321. PubMed DOI

Świsłowski P, Hrabák P, Wacławek S, et al (2021a) The application of active biomonitoring with the use of mosses to identify polycyclic aromatic hydrocarbons in an atmospheric aerosol. Molecules 26. 10.3390/molecules26237258 PubMed PMC

Thangphatthanarungruang J, Chotsuwan C, Siangproh W. A novel and easy-to-construct polymeric l-glutamic acid-modified sensor for urinary 1-hydroxypyrene detection: human biomonitoring of polycyclic aromatic hydrocarbons exposure. Talanta. 2023;253:123929. doi: 10.1016/j.talanta.2022.123929. PubMed DOI

Tobiszewski M, Namieśnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. 2012;162:110–119. doi: 10.1016/j.envpol.2011.10.025. PubMed DOI

Vázquez-Arias A, Giráldez P, Martínez-Abaigar J, et al (2024) Fine-tuning the use of moss transplants to map pollution by potentially toxic elements (PTEs) in urban areas. Sci Total Environ 923. 10.1016/j.scitotenv.2024.171601 PubMed

Vingiani S, De Nicola F, Purvis WO, et al (2015) Active biomonitoring of heavy metals and PAHs with mosses and lichens: a case study in the cities of Naples and London. Water Air Soil Pollut 226. 10.1007/s11270-015-2504-5

Vuković G, Aničić Uroševic M, Razumenić I, et al. Air quality in urban parking garages (PM10, major and trace elements, PAHs): instrumental measurements vs. active moss biomonitoring. Atmos Environ. 2014;85:31–40. doi: 10.1016/j.atmosenv.2013.11.053. DOI

Vuković G, Urošević MA, Pergal M, et al. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study. Environ Sci Pollut Res. 2015;22:18956–18966. doi: 10.1007/s11356-015-5096-0. PubMed DOI

Zemsta E, Barwinek M (2021) A huge fire in Krasocin. The storage halls of Zephyr burned down (in Polish). In: echodnia.eu. https://echodnia.eu/swietokrzyskie/olbrzymi-pozar-w-krasocinie-splonely-hale-magazynowe-zefiru-zdjecia/ar/c1-15615535

Zhang Y, Shotyk W, Zaccone C, et al. Airborne petcoke dust is a major source of polycyclic aromatic hydrocarbons in the athabasca oil sands region. Environ Sci Technol. 2016;50:1711–1720. doi: 10.1021/acs.est.5b05092. PubMed DOI

Zhang Y, Zhou X, Yin B, Downing A. Sensitivity of the xerophytic moss Syntrichia caninervis to prolonged simulated nitrogen deposition. Ann Bot. 2016;117:1153–1161. doi: 10.1093/aob/mcw058. PubMed DOI PMC

Zhang R, Han M, Yu K, et al. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: a case study in spring-summer. J Hazard Mater. 2021;412:125214. doi: 10.1016/j.jhazmat.2021.125214. PubMed DOI

Zhang Y, Pelletier R, Noernberg T, et al. Impact of the 2016 Fort McMurray wildfires on atmospheric deposition of polycyclic aromatic hydrocarbons and trace elements to surrounding ombrotrophic bogs. Environ Int. 2022;158:106910. doi: 10.1016/j.envint.2021.106910. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...