The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Project No. LM2018124
Research Infrastructures NanoEnviCz
PubMed
34885844
PubMed Central
PMC8659324
DOI
10.3390/molecules26237258
PII: molecules26237258
Knihovny.cz E-zdroje
- Klíčová slova
- bioindicator, moss bag technique, polycyclic aromatic hydrocarbons,
- MeSH
- aerosoly analýza MeSH
- atmosféra chemie MeSH
- biologický monitoring * MeSH
- Bryophyta chemie MeSH
- filtrace MeSH
- látky znečišťující vzduch analýza MeSH
- polycyklické aromatické uhlovodíky analýza MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- látky znečišťující vzduch MeSH
- polycyklické aromatické uhlovodíky MeSH
The use of biological indicators of environmental quality is an alternative method of monitoring ecosystem pollution. Various groups of contaminants, including organic ones, can be measured in environmental samples. Polycyclic aromatic hydrocarbons (PAHs) have not yet been determined by the moss bag technique. This technique uses several moss species simultaneously in urban areas to select the best biomonitoring of these compounds, which are dangerous to humans and the environment. In this research, a gas chromatography coupled with mass spectrometry was used for the determination of selected PAHs in three species of mosses: Pleurozium schreberi, Sphagnum fallax and Dicranum polysetum (active biomonitoring) and for comparison using an air filter reference method for atmospheric aerosol monitoring. The chlorophyll fluorescence of photosystem II (PSII) was also measured to assess changes in moss viability during the study. As a result of the study, the selective accumulation of selected PAHs by mosses was found, with Pleurozium schreberi being the best bioindicator-9 out of 13 PAHs compounds were determined in this species. The photosynthetic yield of photosystem (II) decreased by 81% during the exposure time. The relationship between PAHs concentrations in mosses and the total suspended particles (TSP) on the filter indicated the possibility of using this bioindicator to trace PAHs in urban areas and to apply the moss bag technique as a method supporting classical instrumental air monitoring.
Institute of Biology University of Opole Oleska 22 St 45 022 Opole Poland
Society of Ecological Chemistry and Engineering Zawiszaków St 3 103 45 288 Opole Poland
Zobrazit více v PubMed
Zhang X., Yang L., Zhang H., Xing W., Wang Y., Bai P., Zhang L., Hayakawa K., Toriba A., Wei Y., et al. Assessing approaches of human inhalation exposure to polycyclic aromatic hydrocarbons: A review. Int. J. Environ. Res. Public Health. 2021;18:3124. doi: 10.3390/ijerph18063124. PubMed DOI PMC
Scherer G., Frank S., Riedel K., Meger-Kossien I., Renner T. Biomonitoring of Exposure to Polycyclic Aromatic Hydrocarbons of Nonoccupationally Exposed Persons. Cancer Epidemiol. Biomarkers Prev. 2000;9:373–380. PubMed
Thai P.K., Li Z., Sjödin A., Fox A., Diep N.B., Binh T.T., Mueller J.F. Biomonitoring of polycyclic aromatic hydrocarbons exposure in small groups of residents in Brisbane, Australia and Hanoi, Vietnam, and those travelling between the two cities. Chemosphere. 2015;139:358–364. doi: 10.1016/j.chemosphere.2015.07.004. PubMed DOI PMC
Hassan S.K. Particle-bound polycyclic aromatic hydrocarbon in the atmosphere of heavy traffic areas in Greater Cairo, Egypt: Status, Source, and Human Health Risk Assessment. Atmosphere. 2018;9:368. doi: 10.3390/atmos9100368. DOI
Kwak K.H., Woo S.H., Kim K.H., Lee S.B., Bae G.N., Ma Y., II, Sunwoo Y., Baik J.J. On-road air quality associated with traffic composition and street-canyon ventilation: Mobile monitoring and CFD modeling. Atmosphere. 2018;9:92. doi: 10.3390/atmos9030092. DOI
Lhotka R., Pokorná P., Zíková N. Long-term trends in PAH concentrations and sources at rural background site in Central Europe. Atmosphere. 2019;10:687. doi: 10.3390/atmos10110687. DOI
Mikel D.K., Aneja V.P. Measurements and analysis of polycyclic aromatic hydrocarbons near a major interstate. Atmosphere. 2016;7:131. doi: 10.3390/atmos7100131. DOI
Choi H., Harrison R., Komulainen H., Saborit J.M.D. WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization; Geneva, Switzerland: 2010. Polycyclic aromatic hydrocarbons; pp. 289–346.
Trojanowska M., Świetlik R. Cancer risk assessment resulting from respiratory tracts exposure to benzo(a)pyrene in selected Polish cities. Environ. Med. 2013;16:14–22. (In Polish)
1AL-Alam J., Chbani A., Faljoun Z., Millet M. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—A review. Environ. Sci. Pollut. Res. 2019;26:9391–9408. doi: 10.1007/s11356-019-04388-8. PubMed DOI
Mukhopadhyay S., Dutta R., Das P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. Chemosphere. 2020;251:126441. doi: 10.1016/j.chemosphere.2020.126441. PubMed DOI
Glad M., Bihari N., Jakšić Ž., Fafanđel M. Comparison between resident and caged mussels: Polycyclic aromatic hydrocarbon accumulation and biological response. Mar. Environ. Res. 2017;129:195–206. doi: 10.1016/j.marenvres.2017.06.004. PubMed DOI
Vaezzadeh V., Zakaria M.P., Bong C.W., Masood N., Mohsen Magam S., Alkhadher S. Mangrove Oyster (Crassostrea belcheri) as a Biomonitor Species for Bioavailability of Polycyclic Aromatic Hydrocarbons (PAHs) from Sediment of the West Coast of Peninsular Malaysia. Polycycl. Aromat. Compd. 2019;39:470–485. doi: 10.1080/10406638.2017.1348366. DOI
Rybak J., Olejniczak T. Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environ. Sci. Pollut. Res. 2014;21:2313–2324. doi: 10.1007/s11356-013-2092-0. PubMed DOI PMC
Rutkowski R., Rybak J., Rogula-Kozłowska W., Bełcik M., Piekarska K., Jureczko I. Mutagenicity of indoor air pollutants adsorbed on spider webs. Ecotoxicol. Environ. Saf. 2019;171:549–557. doi: 10.1016/j.ecoenv.2019.01.019. PubMed DOI
Harmens H., Foan L., Simon V., Mills G. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review. Environ. Pollut. 2013;173:245–254. doi: 10.1016/j.envpol.2012.10.005. PubMed DOI
Augusto S., Máguas C., Branquinho C. Guidelines for biomonitoring persistent organic pollutants (POPs), usinglichens and aquatic mosses-A review. Environ. Pollut. 2013;180:330–338. doi: 10.1016/j.envpol.2013.05.019. PubMed DOI
Huang S., Dai C., Zhou Y., Peng H., Yi K., Qin P., Luo S., Zhang X. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: A review. Environ. Sci. Pollut. Res. 2018;25:16548–16566. doi: 10.1007/s11356-018-2167-z. PubMed DOI
Carlberg G.E., Ofstad E.B., Drangsholt H., Steinnes E. Atmospheric deposition of organic micropollutants in Norway studied by means of moss and lichen analysis. Chemosphere. 1983;12:341–356. doi: 10.1016/0045-6535(83)90109-1. DOI
Knulst J.C., Westling H.O., Brorstriom-Lunden E. Airborne Organic Micropollutant Concentrations in Mosses and Humus as Indicators for Local Versus Long-Range Sources. Environ. Monit. Assess. 1995;36:75–91. doi: 10.1007/BF00546986. PubMed DOI
Foan L., Sablayrolles C., Elustondo D., Lasheras E., González L., Ederra A., Simon V., Santamaría J.M. Reconstructing historical trends of polycyclic aromatic hydrocarbon deposition in a remote area of Spain using herbarium moss material. Atmos. Environ. 2010;44:3207–3214. doi: 10.1016/j.atmosenv.2010.05.019. DOI
Martinez-Swatson K., Mihály E., Lange C., Ernst M., Dela Cruz M., Price M.J., Mikkelsen T.N., Christensen J.H., Lundholm N., Rønsted N. Biomonitoring of Polycyclic Aromatic Hydrocarbon Deposition in Greenland Using Historical Moss Herbarium Specimens Shows a Decrease in Pollution During the 20th Century. Front. Plant Sci. 2020;11:1085. doi: 10.3389/fpls.2020.01085. PubMed DOI PMC
Foan L., Leblond S., Thöni L., Raynaud C., Santamaría J.M., Sebilo M., Simon V. Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas-Characterization by multivariate analysis. Environ. Pollut. 2014;184:113–122. doi: 10.1016/j.envpol.2013.08.006. PubMed DOI
Dreyer A., Nickel S., Schröder W. (Persistent) Organic pollutants in Germany: Results from a pilot study within the 2015 moss survey. Environ. Sci. Eur. 2018;30:1–14. doi: 10.1186/s12302-018-0172-y. PubMed DOI PMC
Oishi Y. Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan. Environ. Pollut. 2018:330–338. doi: 10.1016/j.envpol.2017.11.035. PubMed DOI
Yakovleva E., Gabov D. Polyarenes accumulation in tundra ecosystem influenced by coal industry of Vorkuta. Polish Polar Res. 2020;41:237–268.
Yakovleva E.V., Gabov D.N., Kondratenok B.M., Dubrovskiy Y.A. Two-Year Monitoring of PAH in the Soils and Pleurozium schreberi under the Impact of Coal Mining. Polycycl. Aromat. Compd. 2021;41:2055–2070. doi: 10.1080/10406638.2019.1709213. DOI
Godzik B., Szarek-Łukaszewska G., Kapusta P., Stȩpień K. PAHs concentrations in Poland using moss Pleurozium schreberi as bioindicator. Polish Bot. J. 2014;59:137–144. doi: 10.2478/pbj-2014-0019. DOI
Dolegowska S., Migaszewski Z.M. PAH concentrations in the moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland) Ecotoxicol. Environ. Saf. 2011;74:1636–1644. doi: 10.1016/j.ecoenv.2011.05.011. PubMed DOI
Wegener J.W.M., van Schaik M.J.M., Aiking H. Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses. Environ. Pollut. 1992;76:15–18. doi: 10.1016/0269-7491(92)90111-M. PubMed DOI
Viskari E.L., Rekilä R., Roy S., Lehto O., Ruuskanen J., Kärenlampi L. Airborne pollutants along a roadside: Assessment using snow analyses and moss bags. Environ. Pollut. 1997;97:153–160. doi: 10.1016/S0269-7491(97)00061-4. PubMed DOI
Orliński R. Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons: Concentrations profile and distribution along Warsaw main streets. Chemosphere. 2002;48:181–186. doi: 10.1016/S0045-6535(02)00062-0. PubMed DOI
Ares A., Aboal J.R., Carballeira A., Giordano S., Adamo P., Fernández J.A. Moss bag biomonitoring: A methodological review. Sci. Total Environ. 2012;432:143–158. doi: 10.1016/j.scitotenv.2012.05.087. PubMed DOI
Foan L., Simon V. Optimization of pressurized liquid extraction using a multivariate chemometric approach and comparison of solid-phase extraction cleanup steps for the determination of polycyclic aromatic hydrocarbons in mosses. J. Chromatogr. A. 2012;1256:22–31. doi: 10.1016/j.chroma.2012.07.065. PubMed DOI
Concha-Graña E., Muniategui-Lorenzo S., De Nicola F., Aboal J.R., Rey-Asensio A.I., Giordano S., Reski R., López-Mahía P., Prada-Rodríguez D. Matrix solid phase dispersion method for determination of polycyclic aromatic hydrocarbons in moss. J. Chromatogr. A. 2015;1406:19–26. doi: 10.1016/j.chroma.2015.06.014. PubMed DOI
Aboal J.R., Concha-Graña E., De Nicola F., Muniategui-Lorenzo S., López-Mahía P., Giordano S., Capozzi F., Di Palma A., Reski R., Zechmeister H., et al. Testing a novel biotechnological passive sampler for monitoring atmospheric PAH pollution. J. Hazard. Mater. 2020;381:120949. doi: 10.1016/j.jhazmat.2019.120949. PubMed DOI
Bustamante J., Liñero O., Arrizabalaga I., Carrero J.A., Arana G., Diego A. De Sample pretreatment to differentiate between bioconcentration and atmospheric deposition of polycyclic aromatic hydrocarbons in mosses. Chemosphere. 2015;122:295–300. doi: 10.1016/j.chemosphere.2014.11.069. PubMed DOI
Capozzi F., Di Palma A., Adamo P., Spagnuolo V., Giordano S. Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves. Atmos. Environ. 2017;150:45–54. doi: 10.1016/j.atmosenv.2016.11.046. DOI
Capozzi F., Adamo P., Spagnuolo V., Giordano S. Field comparison between moss and lichen PAHs uptake abilities based on deposition fluxes and diagnostic ratios. Ecol. Indic. 2021;120:106954. doi: 10.1016/j.ecolind.2020.106954. DOI
Vingiani S., De Nicola F., Purvis W.O., Concha-Graña E., Muniategui-Lorenzo S., López-Mahía P., Giordano S., Adamo P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: A Case Study in the Cities of Naples and London. Water Air Soil Pollut. 2015;226:1–12. doi: 10.1007/s11270-015-2504-5. DOI
De Nicola F., Murena F., Costagliola M.A., Alfani A., Baldantoni D., Prati M.V., Sessa L., Spagnuolo V., Giordano S. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon. Environ. Sci. Pollut. Res. 2013;20:4969–4979. doi: 10.1007/s11356-012-1456-1. PubMed DOI
Foan L., Domercq M., Bermejo R., Santamaría J.M., Simon V. Mosses as an integrating tool for monitoring PAH atmospheric deposition: Comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study. Chemosphere. 2015;119:452–458. doi: 10.1016/j.chemosphere.2014.06.071. PubMed DOI
Capozzi F., Sorrentino M.C., Di Palma A., Mele F., Arena C., Adamo P., Spagnuolo V., Giordano S. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags. Ecol. Indic. 2020;108:105727. doi: 10.1016/j.ecolind.2019.105727. DOI
Wang Z., Liu S., Bu Z.J., Wang S. Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay. Environ. Sci. Pollut. Res. 2018;25:18642–18650. doi: 10.1007/s11356-018-2019-x. PubMed DOI
Astel A., Astel K., Biziuk M. PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre moss exposed in the Gdańsk City Area. Environ. Sci. Pollut. Res. 2008;15:41–50. doi: 10.1065/espr2007.05.422. PubMed DOI
Kozielska B., Rogula-Kozłowska W., Klejnowski K. Seasonal variations in health hazards from polycyclic aromatic hydrocarbons bound to submicrometer particles at three characteristic sites in the heavily polluted polish region. Atmosphere. 2015;6:1–20. doi: 10.3390/atmos6010001. DOI
Godzik B. Use of bioindication methods in national, regional and local monitoring in Poland-changes in the air pollution level over several decades. Atmosphere. 2020;11:143. doi: 10.3390/atmos11020143. DOI
Vuković G., Aničić Uroševic M., Razumenić I., Kuzmanoski M., Pergal M., Škrivanj S., Popović A. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos. Environ. 2014;85:31–40. doi: 10.1016/j.atmosenv.2013.11.053. DOI
Ciesielczuk T., Olszowski T., Prokop M., Kłos A. Application of mosses to identification of emission sources of polycyclic aromatic hydrocarbons. Ecol. Chem. Eng. S. 2012;19:585–595.
Jóźwiak M.A., Rybiński P. Assessment of air pollution along express roads and motorways of varied traffic load with the use of bioindicators. Rocz. Świętokrzyski Seria B Nauki Przyr. Kieleckie Tow. Nauk. 2013;34:51–63.
Rybinski P., Jozwiak M. Bio-indicative assessment of motorway air pollution using thermal analysis. Polish J. Environ. Stud. 2014;23:1617–1625.
Zechmeister H.G., Dullinger S., Hohenwallner D., Riss A., Hanus-Illnar A., Scharf S. Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environ. Sci. Pollut. Res. 2006;13:398–405. doi: 10.1065/espr2006.01.292. PubMed DOI
Skert N., Falomo J., Giorgini L., Acquavita A., Capriglia L., Grahonja R., Miani N. Biological and artificial matrixes as pah accumulators: An experimental comparative study. Water Air Soil Pollut. 2010;206:95–103. doi: 10.1007/s11270-009-0089-6. DOI
Ares Á., Ángel Fernández J., Ramón Aboal J., Carballeira A. Study of the air quality in industrial areas of Santa Cruz de Tenerife (Spain) by active biomonitoring with Pseudoscleropodium purum. Ecotoxicol. Environ. Saf. 2011;74:533–541. doi: 10.1016/j.ecoenv.2010.08.019. PubMed DOI
Vuković G., Urošević M.A., Pergal M., Janković M., Goryainova Z., Tomašević M., Popović A. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): A moss bag case study. Environ. Sci. Pollut. Res. 2015;22:18956–18966. doi: 10.1007/s11356-015-5096-0. PubMed DOI
Pochwała S., Gardecki A., Lewandowski P., Somogyi V., Anweiler S. Developing of low-cost air pollution sensor—Measurements with the unmanned aerial vehicles in Poland. Sensors. 2020;20:3582. doi: 10.3390/s20123582. PubMed DOI PMC
Olszowski T. Influence of individual household heating on PM2.5 concentration in a rural settlement. Atmosphere. 2019;10:782. doi: 10.3390/atmos10120782. DOI
Svozilík V., Krakovská A.S., Bitta J., Jančík P. Comparison of the air pollution mathematical model of pm10 and moss biomonitoring results in the Tritia region. Atmosphere. 2021;12:656. doi: 10.3390/atmos12060656. DOI
Sucharová J., Holá M. PAH and PCB determination of the concentration gradient in moss Pleurozium schreberi near a highway, and seasonal variability at the background reference site. Int. J. Environ. Anal. Chem. 2014;94:712–727. doi: 10.1080/03067319.2014.900675. DOI
Yakovleva E.V., Gabov D.N., Beznosikov V.A., Kondratenok B.M., Dubrovskiy Y.A. Accumulation of PAHs in Tundra Plants and Soils under the Influence of Coal Mining. Polycycl. Aromat. Compd. 2017;37:203–218. doi: 10.1080/10406638.2016.1244089. DOI
Urošević M.A., Vuković G., Jovanović P., Vujičić M., Sabovljević A., Sabovljević M., Tomašević M. Urban background of air pollution: Evaluation through moss bag biomonitoring of trace elements in Botanical garden. Urban For. Urban Green. 2017;25:1–10. doi: 10.1016/j.ufug.2017.04.016. DOI
Van Gaalen K.E., Flanagan L.B., Peddle D.R. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia. 2007;153:19–28. doi: 10.1007/s00442-007-0718-y. PubMed DOI
Giordano S., Sorbo S., Adamo P., Basile A., Spagnuolo V., Cobianchi R.C. Biodiversity and Trace Element Content of Epiphytic Bryophytes in Urban andExtraurban Sites of Southern Italy. Plant Ecol. 2004;170:1–14. doi: 10.1023/B:VEGE.0000019025.36121.5d. DOI
Plaza-Bolaños P., Frenich A.G., Vidal J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A. 2010;1217:6303–6326. doi: 10.1016/j.chroma.2010.07.079. PubMed DOI
Official Journal of the European Union Directive 2004/107/EC of the European Parliament and of the Council of 15/12/2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. Eur. Union. 2005;L23:3–16.
Sapota A. Polycyclic aromatic hydrocarbons (cyclohexane soluble tar substances). Documentation of proposed occupational exposure limit values (in Polish) Pod. Metod. Ocen. Środow. Przyr. 2002;32:179–208.
Zechmeister H.G., Rivera M., Köllensperger G., Marrugat J., Künzli N. Indoor monitoring of heavy metals and NO2 using active monitoring by moss and Palmes diffusion tubes. Environ. Sci. Eur. 2020;32:1–12. doi: 10.1186/s12302-020-00439-x. DOI
Ryzhakova N.K., Rogova N.S., Borisenko A.L. Research of Mosses Accumulation Properties Used for Assessment of Regional and Local Atmospheric Pollution. Environ. Res. Eng. Manag. 2014;69:84–91. doi: 10.5755/j01.erem.69.3.5566. DOI
Gorelova S.V., Frontasyeva M.V., Volkova E.V., Vergel K.N., Babicheva D.E. Trace element accumulating ability of different moss species used to study atmospheric deposition of heavy metals in Central Russia: Tula region case study. Int. J. Biol. Biomed. Eng. 2016;10:271–285.
ICP Vegetation Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey. 2020. [(accessed on 29 November 2021)]. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf.
Świsłowski P., Kosior G., Rajfur M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ. Sci. Pollut. Res. 2021;28:10068–10076. doi: 10.1007/s11356-020-11484-7. PubMed DOI PMC
European Commission . EN 12341:2014 Ambient Air-Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2,5 Mass Concentration of Suspended Particulate Matter. European Commission; Brussels, Belgium: 2014.
Šraj Kržič N., Gaberščik A. Photochemical efficiency of amphibious plants in an intermittent lake. Aquat. Bot. 2005;83:281–288. doi: 10.1016/j.aquabot.2005.05.012. DOI
Zar J. Biostatistical Analysis. 5th ed. Pearson; Upper Saddle River, NJ, USA: 2010.
StatSoft Inc Statistica (Data Analysis Software System) TIBCO Software Inc.; Tulsa, OK, USA: 2017. Version 13.