Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549)

. 2016 Aug 26 ; 17 (9) : . [epub] 20160826

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27571070

We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.

Zobrazit více v PubMed

Loomis D., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Baan R., Mattock H., Straif K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013;14:1262–1263. doi: 10.1016/S1470-2045(13)70487-X. PubMed DOI

IARC . IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 105. IARC Publications; Lyon, France: 2013. Diesel and gasoline engine exhausts and some nitroarenes; p. 467. PubMed

Bamford H.A., Bezabeh D.Z., Schantz S., Wise S.A., Baker J.E. Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere. 2003;50:575–587. doi: 10.1016/S0045-6535(02)00667-7. PubMed DOI

IARC . IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 100. IARC Publications; Lyon, France: 2012. Chemical agents and related occupations; pp. 137–138. PubMed PMC

Penning T.M., Burczynski M.E., Hung C.F., McCoull K.D., Palackal N.T., Tsuruda L.S. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: Generation of reactive and redox active o-quinones. Chem. Res. Toxicol. 1999;12:1–18. doi: 10.1021/tx980143n. PubMed DOI

Toriba A., Kitaoka H., Dills R.L., Mizukami S., Tanabe K., Takeuchi N., Ueno M., Kameda T., Tang N., Hayakawa K., et al. Identification and quantification of 1-nitropyrene metabolites in human urine as a proposed biomarker for exposure to diesel exhaust. Chem. Res. Toxicol. 2007;20:999–1007. doi: 10.1021/tx700015q. PubMed DOI

Silvers K.J., Couch L.H., Rorke E.A., Howard P.C. Role of nitroreductases but not cytochromes P450 in the metabolic activation of 1-nitropyrene in the HepG2 human hepatoblastoma cell line. Biochem. Pharmacol. 1997;54:927–936. doi: 10.1016/S0006-2952(97)00268-2. PubMed DOI

WHO . Environ. Health Criteria. Volume 229. World Health Organization; Geneva, Switzerland: 2003. Selected nitro and nitrooxy-polycyclic-aromatic hydrocarbons; pp. 125–140.

Andersson H., Piras E., Demma J., Hellman B., Brittebo E. Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology. 2009;262:57–64. doi: 10.1016/j.tox.2009.05.008. PubMed DOI

Ohnishi S., Murata M., Fukuhara K., Miyata N., Kawanishi S. Oxidative DNA damage by a metabolite of carcinogenic 1-nitropyrene. Biochem. Biophys. Res. Commun. 2001;280:48–52. doi: 10.1006/bbrc.2000.4095. PubMed DOI

Arlt V.M. 3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: A review of the evidence. Mutagenesis. 2005;20:399–410. doi: 10.1093/mutage/gei057. PubMed DOI

Arlt V.M., Cole K.J., Phillips D.H. Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species in human B lymphoblastoid MCL-5 cells. Mutagenesis. 2004;19:149–156. doi: 10.1093/mutage/geh008. PubMed DOI

Murata M., Tezuka T., Ohnishi S., Takamura-Enya T., Hisamatsu Y., Kawanishi S. Carcinogenic 3-nitrobenzanthrone induces oxidative damage to isolated and cellular DNA. Free Radic. Biol. Med. 2006;40:1242–1249. doi: 10.1016/j.freeradbiomed.2005.11.015. PubMed DOI

Oya E., Ovrevik J., Arlt V.M., Nagy E., Phillips D.H., Holme J.A. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: Role in apoptosis. Mutagenesis. 2011;26:697–708. doi: 10.1093/mutage/ger035. PubMed DOI

Foster K.A., Oster C.G., Mayer M.M., Avery M.L., Audus K.L. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp. Cell Res. 1998;243:359–366. doi: 10.1006/excr.1998.4172. PubMed DOI

Hansen T., Seidel A., Borlak J. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells. Toxicol. Appl. Pharmacol. 2007;221:222–234. doi: 10.1016/j.taap.2007.03.003. PubMed DOI

Genies C., Maitre A., Lefebvre E., Jullien A., Chopard-Lallier M., Douki T. The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs. PLoS ONE. 2013;8:1393. doi: 10.1371/journal.pone.0078356. PubMed DOI PMC

Libalova H., Krckova S., Uhlirova K., Milcova A., Schmuczerova J., Ciganek M., Klema J., Machala M., Sram R.J., Topinka J. Genotoxicity but not the AhR-mediated activity of PAHs is inhibited by other components of complex mixtures of ambient air pollutants. Toxicol. Lett. 2014;225:350–357. doi: 10.1016/j.toxlet.2014.01.028. PubMed DOI

Aoki Y., Sato H., Nishimura N., Takahashi S., Itoh K., Yamamoto M. Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicol. Appl. Pharmacol. 2001;173:154–160. doi: 10.1006/taap.2001.9176. PubMed DOI

Aoki Y., Hashimoto A.H., Amanuma K., Matsumoto M., Hiyoshi K., Takano H., Masumura K., Itoh K., Nohmi T., Yamamoto M. Enhanced spontaneous and benzo(a)pyrene-induced mutations in the lung of Nrf2-deficient gpt delta mice. Cancer Res. 2007;67:5643–5648. doi: 10.1158/0008-5472.CAN-06-3355. PubMed DOI

Yamazaki H., Hatanaka N., Kizu R., Hayakawa K., Shimada N., Guengerich F.P., Nakajima M., Yokoi T. Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2, and 1B1. Mutat. Res. 2000;472:129–138. doi: 10.1016/S1383-5718(00)00138-8. PubMed DOI

Ovrevik J., Arlt V.M., Oya E., Nagy E., Mollerup S., Phillips D.H., Lag M., Holme J.A. Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells. Toxicol. Appl. Pharmacol. 2010;242:270–280. doi: 10.1016/j.taap.2009.10.017. PubMed DOI

Iwanari M., Nakajima M., Kizu R., Hayakawa K., Yokoi T. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: Chemical-, cytochrome P450 isoform-, and cell-specific differences. Arch. Toxicol. 2002;76:287–298. doi: 10.1007/s00204-002-0340-z. PubMed DOI

Nagy E., Johansson C., Zeisig M., Moller L. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005;827:94–103. doi: 10.1016/j.jchromb.2005.03.014. PubMed DOI

Nagy E., Adachi S., Takamura-Enya T., Zeisig M., Moller L. DNA adduct formation and oxidative stress from the carcinogenic urban air pollutant 3-nitrobenzanthrone and its isomer 2-nitrobenzanthrone, in vitro and in vivo. Mutagenesis. 2007;22:135–145. doi: 10.1093/mutage/gel067. PubMed DOI

Stiborova M., Dracinska H., Mizerovska J., Frei E., Schmeiser H.H., Hudecek J., Hodek P., Phillips D.H., Arlt V.M. The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinoneoxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity. Toxicology. 2008;247:11–22. doi: 10.1016/j.tox.2008.01.018. PubMed DOI

Mizerovska J., Dracinska H., Arlt V.M., Schmeiser H.H., Frei E., Stiborova M. Oxidation of 3-aminobenzanthrone, a human metabolite of carcinogenic environmental pollutant 3-nitrobenzanthrone, by cytochromes P450—Similarity between human and rat enzymes. Neuro Endocrinol. Lett. 2009;30:52–59. PubMed

Kim Y.D., Ko Y.J., Kawamoto T., Kim H. The effects of 1-nitropyrene on oxidative DNA damage and expression of DNA repair enzymes. J. Occup. Health. 2005;47:261–266. doi: 10.1539/joh.47.261. PubMed DOI

Hanzalova K., Rossner P., Jr., Sram R.J. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter. Mutat. Res. 2010;696:114–121. doi: 10.1016/j.mrgentox.2009.12.018. PubMed DOI

Bolck B., Ibrahim M., Steinritz D., Morguet C., Duhr S., Suhr F., Lu-Hesselmann J., Bloch W. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol. in Vitro. 2014;28:875–884. doi: 10.1016/j.tiv.2014.03.010. PubMed DOI

Fullove T.P., Yu H. DNA damage and repair of human skin keratinocytes concurrently exposed to pyrene derivatives and UVA light. Toxicol. Res. Camb. 2013;2:193–199. doi: 10.1039/c3tx20085j. PubMed DOI PMC

Persson H.L., Nilsson K.J., Brunk U.T. Novel cellular defenses against iron and oxidation: Ferritin and autophagocytosis preserve lysosomal stability in airway epithelium. Redox. Rep. 2001;6:57–63. doi: 10.1179/135100001101536049. PubMed DOI

De Mejia E.G., Ramirez-Mares M.V. Leaf extract from Ardisiacompressa protects against 1-nitropyrene-induced cytotoxicity and its antioxidant defense disruption in cultured rat hepatocytes. Toxicology. 2002;179:151–162. doi: 10.1016/S0300-483X(02)00242-1. PubMed DOI

Landvik N.E., Gorria M., Arlt V.M., Asare N., Solhaug A., Lagadic-Gossmann D., Holme J.A. Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: Possible implications for their mutagenic and carcinogenic effects. Toxicology. 2007;231:159–174. doi: 10.1016/j.tox.2006.12.009. PubMed DOI

Fullove T.P., Johnson B., Yu H. Structure-dependent lipid peroxidation by photoirradiation of pyrene and its mono-substituted derivatives. J. Environ. Sci. Health Toxic Hazard. Subst. Environ. Eng. 2013;48:233–241. doi: 10.1080/10934529.2013.729998. PubMed DOI PMC

Lu Y., Wahl L.M. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J. Immunol. 2005;175:5423–5429. doi: 10.4049/jimmunol.175.8.5423. PubMed DOI

Morrow C.S., Chiu J., Cowan K.H. Posttranscriptional control of glutathione S-transferase pi gene expression in human breast cancer cells. J. Biol. Chem. 1992;267:10544–10550. PubMed

Gupta R.C. Enhanced Sensitivity of 32P-Postlabeling Analysis of Aromatic Carcinogen: DNA Adducts. Cancer Res. 1985;45:5656–5662. PubMed

Phillips D.H., Castegnaro M. Standardization and validation of DNA adduct postlabelling methods: Report of interlaboratory trials and production of recommended protocols. Mutagenesis. 1999;14:301–315. doi: 10.1093/mutage/14.3.301. PubMed DOI

Randerath E., Avitts T.A., Reddy M.V., Miller R.H., Everson R.B., Randerath K. Comparative 32P-postlabeling analysis of cigarette smoke-induced DNA damage in human tissues and mouse skin. Cancer Res. 1986;46:5869–5877. PubMed

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...