Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27571070
PubMed Central
PMC5037673
DOI
10.3390/ijms17091393
PII: ijms17091393
Knihovny.cz E-zdroje
- Klíčová slova
- 1-nitropyrene, 3-nitrobenzanthrone, benzo[a]pyrene, bulky DNA adducts, gene expression, oxidative damage,
- MeSH
- adukty DNA účinky léků genetika MeSH
- benz(a)anthraceny toxicita MeSH
- benzopyren toxicita MeSH
- buňky A549 MeSH
- cyklooxygenasa 2 genetika MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- cytochrom P450 CYP1B1 genetika MeSH
- hydroxysteroiddehydrogenasy genetika MeSH
- lidé MeSH
- NAD(P)H dehydrogenasa (chinon) genetika MeSH
- pneumocyty účinky léků metabolismus MeSH
- poškození DNA účinky léků genetika MeSH
- pyreny toxicita MeSH
- systém (enzymů) cytochromů P-450 genetika MeSH
- výfukové emise vozidel toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-nitropyrene MeSH Prohlížeč
- 3-nitrobenzanthrone MeSH Prohlížeč
- adukty DNA MeSH
- AKR1C2 protein, human MeSH Prohlížeč
- benz(a)anthraceny MeSH
- benzopyren MeSH
- cyklooxygenasa 2 MeSH
- CYP1A1 protein, human MeSH Prohlížeč
- CYP1B1 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP1A1 MeSH
- cytochrom P450 CYP1B1 MeSH
- hydroxysteroiddehydrogenasy MeSH
- NAD(P)H dehydrogenasa (chinon) MeSH
- NQO1 protein, human MeSH Prohlížeč
- POR protein, human MeSH Prohlížeč
- PTGS2 protein, human MeSH Prohlížeč
- pyreny MeSH
- systém (enzymů) cytochromů P-450 MeSH
- výfukové emise vozidel MeSH
We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.
Zobrazit více v PubMed
Loomis D., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Baan R., Mattock H., Straif K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013;14:1262–1263. doi: 10.1016/S1470-2045(13)70487-X. PubMed DOI
IARC . IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 105. IARC Publications; Lyon, France: 2013. Diesel and gasoline engine exhausts and some nitroarenes; p. 467. PubMed
Bamford H.A., Bezabeh D.Z., Schantz S., Wise S.A., Baker J.E. Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere. 2003;50:575–587. doi: 10.1016/S0045-6535(02)00667-7. PubMed DOI
IARC . IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 100. IARC Publications; Lyon, France: 2012. Chemical agents and related occupations; pp. 137–138. PubMed PMC
Penning T.M., Burczynski M.E., Hung C.F., McCoull K.D., Palackal N.T., Tsuruda L.S. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: Generation of reactive and redox active o-quinones. Chem. Res. Toxicol. 1999;12:1–18. doi: 10.1021/tx980143n. PubMed DOI
Toriba A., Kitaoka H., Dills R.L., Mizukami S., Tanabe K., Takeuchi N., Ueno M., Kameda T., Tang N., Hayakawa K., et al. Identification and quantification of 1-nitropyrene metabolites in human urine as a proposed biomarker for exposure to diesel exhaust. Chem. Res. Toxicol. 2007;20:999–1007. doi: 10.1021/tx700015q. PubMed DOI
Silvers K.J., Couch L.H., Rorke E.A., Howard P.C. Role of nitroreductases but not cytochromes P450 in the metabolic activation of 1-nitropyrene in the HepG2 human hepatoblastoma cell line. Biochem. Pharmacol. 1997;54:927–936. doi: 10.1016/S0006-2952(97)00268-2. PubMed DOI
WHO . Environ. Health Criteria. Volume 229. World Health Organization; Geneva, Switzerland: 2003. Selected nitro and nitrooxy-polycyclic-aromatic hydrocarbons; pp. 125–140.
Andersson H., Piras E., Demma J., Hellman B., Brittebo E. Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology. 2009;262:57–64. doi: 10.1016/j.tox.2009.05.008. PubMed DOI
Ohnishi S., Murata M., Fukuhara K., Miyata N., Kawanishi S. Oxidative DNA damage by a metabolite of carcinogenic 1-nitropyrene. Biochem. Biophys. Res. Commun. 2001;280:48–52. doi: 10.1006/bbrc.2000.4095. PubMed DOI
Arlt V.M. 3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: A review of the evidence. Mutagenesis. 2005;20:399–410. doi: 10.1093/mutage/gei057. PubMed DOI
Arlt V.M., Cole K.J., Phillips D.H. Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species in human B lymphoblastoid MCL-5 cells. Mutagenesis. 2004;19:149–156. doi: 10.1093/mutage/geh008. PubMed DOI
Murata M., Tezuka T., Ohnishi S., Takamura-Enya T., Hisamatsu Y., Kawanishi S. Carcinogenic 3-nitrobenzanthrone induces oxidative damage to isolated and cellular DNA. Free Radic. Biol. Med. 2006;40:1242–1249. doi: 10.1016/j.freeradbiomed.2005.11.015. PubMed DOI
Oya E., Ovrevik J., Arlt V.M., Nagy E., Phillips D.H., Holme J.A. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: Role in apoptosis. Mutagenesis. 2011;26:697–708. doi: 10.1093/mutage/ger035. PubMed DOI
Foster K.A., Oster C.G., Mayer M.M., Avery M.L., Audus K.L. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp. Cell Res. 1998;243:359–366. doi: 10.1006/excr.1998.4172. PubMed DOI
Hansen T., Seidel A., Borlak J. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells. Toxicol. Appl. Pharmacol. 2007;221:222–234. doi: 10.1016/j.taap.2007.03.003. PubMed DOI
Genies C., Maitre A., Lefebvre E., Jullien A., Chopard-Lallier M., Douki T. The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs. PLoS ONE. 2013;8:1393. doi: 10.1371/journal.pone.0078356. PubMed DOI PMC
Libalova H., Krckova S., Uhlirova K., Milcova A., Schmuczerova J., Ciganek M., Klema J., Machala M., Sram R.J., Topinka J. Genotoxicity but not the AhR-mediated activity of PAHs is inhibited by other components of complex mixtures of ambient air pollutants. Toxicol. Lett. 2014;225:350–357. doi: 10.1016/j.toxlet.2014.01.028. PubMed DOI
Aoki Y., Sato H., Nishimura N., Takahashi S., Itoh K., Yamamoto M. Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicol. Appl. Pharmacol. 2001;173:154–160. doi: 10.1006/taap.2001.9176. PubMed DOI
Aoki Y., Hashimoto A.H., Amanuma K., Matsumoto M., Hiyoshi K., Takano H., Masumura K., Itoh K., Nohmi T., Yamamoto M. Enhanced spontaneous and benzo(a)pyrene-induced mutations in the lung of Nrf2-deficient gpt delta mice. Cancer Res. 2007;67:5643–5648. doi: 10.1158/0008-5472.CAN-06-3355. PubMed DOI
Yamazaki H., Hatanaka N., Kizu R., Hayakawa K., Shimada N., Guengerich F.P., Nakajima M., Yokoi T. Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2, and 1B1. Mutat. Res. 2000;472:129–138. doi: 10.1016/S1383-5718(00)00138-8. PubMed DOI
Ovrevik J., Arlt V.M., Oya E., Nagy E., Mollerup S., Phillips D.H., Lag M., Holme J.A. Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells. Toxicol. Appl. Pharmacol. 2010;242:270–280. doi: 10.1016/j.taap.2009.10.017. PubMed DOI
Iwanari M., Nakajima M., Kizu R., Hayakawa K., Yokoi T. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: Chemical-, cytochrome P450 isoform-, and cell-specific differences. Arch. Toxicol. 2002;76:287–298. doi: 10.1007/s00204-002-0340-z. PubMed DOI
Nagy E., Johansson C., Zeisig M., Moller L. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005;827:94–103. doi: 10.1016/j.jchromb.2005.03.014. PubMed DOI
Nagy E., Adachi S., Takamura-Enya T., Zeisig M., Moller L. DNA adduct formation and oxidative stress from the carcinogenic urban air pollutant 3-nitrobenzanthrone and its isomer 2-nitrobenzanthrone, in vitro and in vivo. Mutagenesis. 2007;22:135–145. doi: 10.1093/mutage/gel067. PubMed DOI
Stiborova M., Dracinska H., Mizerovska J., Frei E., Schmeiser H.H., Hudecek J., Hodek P., Phillips D.H., Arlt V.M. The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinoneoxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity. Toxicology. 2008;247:11–22. doi: 10.1016/j.tox.2008.01.018. PubMed DOI
Mizerovska J., Dracinska H., Arlt V.M., Schmeiser H.H., Frei E., Stiborova M. Oxidation of 3-aminobenzanthrone, a human metabolite of carcinogenic environmental pollutant 3-nitrobenzanthrone, by cytochromes P450—Similarity between human and rat enzymes. Neuro Endocrinol. Lett. 2009;30:52–59. PubMed
Kim Y.D., Ko Y.J., Kawamoto T., Kim H. The effects of 1-nitropyrene on oxidative DNA damage and expression of DNA repair enzymes. J. Occup. Health. 2005;47:261–266. doi: 10.1539/joh.47.261. PubMed DOI
Hanzalova K., Rossner P., Jr., Sram R.J. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter. Mutat. Res. 2010;696:114–121. doi: 10.1016/j.mrgentox.2009.12.018. PubMed DOI
Bolck B., Ibrahim M., Steinritz D., Morguet C., Duhr S., Suhr F., Lu-Hesselmann J., Bloch W. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol. in Vitro. 2014;28:875–884. doi: 10.1016/j.tiv.2014.03.010. PubMed DOI
Fullove T.P., Yu H. DNA damage and repair of human skin keratinocytes concurrently exposed to pyrene derivatives and UVA light. Toxicol. Res. Camb. 2013;2:193–199. doi: 10.1039/c3tx20085j. PubMed DOI PMC
Persson H.L., Nilsson K.J., Brunk U.T. Novel cellular defenses against iron and oxidation: Ferritin and autophagocytosis preserve lysosomal stability in airway epithelium. Redox. Rep. 2001;6:57–63. doi: 10.1179/135100001101536049. PubMed DOI
De Mejia E.G., Ramirez-Mares M.V. Leaf extract from Ardisiacompressa protects against 1-nitropyrene-induced cytotoxicity and its antioxidant defense disruption in cultured rat hepatocytes. Toxicology. 2002;179:151–162. doi: 10.1016/S0300-483X(02)00242-1. PubMed DOI
Landvik N.E., Gorria M., Arlt V.M., Asare N., Solhaug A., Lagadic-Gossmann D., Holme J.A. Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: Possible implications for their mutagenic and carcinogenic effects. Toxicology. 2007;231:159–174. doi: 10.1016/j.tox.2006.12.009. PubMed DOI
Fullove T.P., Johnson B., Yu H. Structure-dependent lipid peroxidation by photoirradiation of pyrene and its mono-substituted derivatives. J. Environ. Sci. Health Toxic Hazard. Subst. Environ. Eng. 2013;48:233–241. doi: 10.1080/10934529.2013.729998. PubMed DOI PMC
Lu Y., Wahl L.M. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J. Immunol. 2005;175:5423–5429. doi: 10.4049/jimmunol.175.8.5423. PubMed DOI
Morrow C.S., Chiu J., Cowan K.H. Posttranscriptional control of glutathione S-transferase pi gene expression in human breast cancer cells. J. Biol. Chem. 1992;267:10544–10550. PubMed
Gupta R.C. Enhanced Sensitivity of 32P-Postlabeling Analysis of Aromatic Carcinogen: DNA Adducts. Cancer Res. 1985;45:5656–5662. PubMed
Phillips D.H., Castegnaro M. Standardization and validation of DNA adduct postlabelling methods: Report of interlaboratory trials and production of recommended protocols. Mutagenesis. 1999;14:301–315. doi: 10.1093/mutage/14.3.301. PubMed DOI
Randerath E., Avitts T.A., Reddy M.V., Miller R.H., Everson R.B., Randerath K. Comparative 32P-postlabeling analysis of cigarette smoke-induced DNA damage in human tissues and mouse skin. Cancer Res. 1986;46:5869–5877. PubMed
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI