A New Sensitive Sensor Test for Capturing and Evaluating Bacteria and Viruses in Airborne Aerosols
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VI04000071
National Sustainability programme, from a Czech Ministry of the Interior
BUT BD 2020-2022, FEKT-S-20-6360
Brno University of Technology
BD 2023-2025, FEKT-S-23-8425
Brno University of Technology
PubMed
40648124
PubMed Central
PMC12251567
DOI
10.3390/s25133866
PII: s25133866
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, PCR, aerosol, bacteria, detection, electromagnetic field, sensor, virus,
- MeSH
- aerosoly analýza MeSH
- Bacillus subtilis izolace a purifikace MeSH
- Bacteria * izolace a purifikace MeSH
- biosenzitivní techniky * metody přístrojové vybavení MeSH
- mikrobiologie vzduchu * MeSH
- viry * izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
In this paper, the authors describe an electromagnetic-hydrodynamic (EMHD) model of the airborne microbiological agent detection concept for the design of a sensor to identify the presence of airborne bacteria and viruses. Based on the model and a laboratory test, a methodology was proposed for the capture and subsequent detection of low-concentration bacterial and viral agents in airborne aerosols. A physical-biological approach was proposed to detect microorganisms based on their physical properties. The principle was validated in the laboratory on samples of defined concentrated water aerosols of Bacillus subtilis (BS) and feline infectious peritonitis virus (FIVP). Repeated tests with different concentrations were performed in the laboratory conditions.
Zobrazit více v PubMed
Wolff G.G. Influenza vaccination and respiratory virus interference among department of defense personnel during the 2017–2018 influenza season. Vaccine. 2020;38:350–354. doi: 10.1016/j.vaccine.2019.10.005. PubMed DOI PMC
Zheng Q., Duan T., Jin L. Single-cell RNA expression profiling of ACE2 and AXL in the human maternal-fetal interface. Reprod. Dev. Med. 2020;4:7–10. doi: 10.4103/2096-2924.278679. DOI
Ferguson N.M., Laydon D., Nedjati-Gilani G., Imai N., Ainslie K., Baguelin M., Hinsley W. Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand. Imperial College COVID-19 Response Team; London, UK: 2020. DOI
Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–1448. doi: 10.1126/science.abb2762. PubMed DOI PMC
Basavaraju S.V., Patton M.E., Grimm K., Rasheed MA U., Lester S., Mills L., Stramer S.L. Serologic testing of US blood donations to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive antibodies: December 2019-january 2020. Clin. Infect. Dis. 2021;72:E1004–E1009. doi: 10.1093/cid/ciaa1785. PubMed DOI PMC
Lee W.S., Wheatley A.K., Kent S.J., DeKosky B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 2020;5:1185–1191. doi: 10.1038/s41564-020-00789-5. PubMed DOI PMC
Liu G., Rusling J.F. COVID-19 antibody tests and their limitations. ACS Sens. 2021;6:593–612. doi: 10.1021/acssensors.0c02621. PubMed DOI
Creager H.M., Tumpey T.M., Maines T.R., Belser J.A. Infection of Cultured Mammalian Cells with Aerosolized Influenza Virus. Springer; Berlin/Heidelberg, Germany: 2018. PubMed DOI PMC
Creager H.M., Zeng H., Pulit-Penaloza J.A., Maines T.R., Tumpey T.M., Belser J.A. In vitro exposure system for study of aerosolized influenza virus. Virology. 2017;500:62–70. doi: 10.1016/j.virol.2016.10.007. PubMed DOI PMC
Szabo Z., Kadlec R., Fiala P., Klima M., Steinbauer M. Modeling layered organic samples of PSEUDO-SPECKLE structures; Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS); Hangzhou, China. 21–25 November 2021; pp. 443–448. DOI
Steinbauer M., Pernica R., Zukal J., Kadlec R., Bachorec T., Fiala P. Modeling Electromagnetic Nanostructures and Experimenting with Nanoelectric Elements to Form Periodic Structures. Inform. Autom. Pomiary W Gospod. I Ochr. Sr. 2020;10:4–14. doi: 10.35784/iapgos.2383. DOI
Srivastava D.K., Chouhan M., Sharma A.K. Machine Learning and Data Science: Fundamentals and Applications. Wiley; New York, NY, USA: 2021. Healthcare case study: COVID19 detection, prevention measures, and prediction using machine learning & deep learning algorithms; pp. 109–134.
Firmansyah H., Fadlillah A.N., Pawitra A.S. Particulate Matter as a Driven Factor Covid19 Transmission at Outdoor: Review. J. Kesehat. Lingkung. 2020;12:225–234. doi: 10.20473/jkl.v12i3.2020.225-234. DOI
Fiala P., Szabó Z., Friedl M. EMHD models respecting relativistic processes of trivial geometries. Prog. Electromagn. Res. Symp. 2011:95–98.
Hu R., Liao T., Ren Y., Liu W., Ma R., Wang X., Lin Q., Wang G., Liang Y. Sensitively detecting antigen of SARS-CoV-2 by NIR-II fluorescent nanoparticles. Nano Res. 2020;15:7313–7319. doi: 10.1007/s12274-022-4351-1. PubMed DOI PMC
Assennato S.M., Ritchie A.V., Nadala C., Goel N., Tie C., Nadala L.M., Zhang H., Datir R., Gupta R.K., Curran M.D., et al. Performance evaluation of the SAMBA II SARS-CoV-2 test for point-of-care detection of SARS-CoV-2. J. Clin. Microbiol. 2021;59:e01262-20. doi: 10.1128/JCM.01262-20. PubMed DOI PMC
Zhao L., Song Q., Mai W., Deng M., Lei Y., Chen L., Kong W., Zhang L., Zhang L., Li Y., et al. Engineering highly efficient NIR-II FRET platform for Background-Free homogeneous detection of SARS-CoV-2 neutralizing antibodies in whole blood. Chem. Eng. J. 2023;468:143616. doi: 10.1016/j.cej.2023.143616. PubMed DOI PMC
Buchta C., Görzer I., Chiba P., Camp J.V., Holzmann H., Puchhammer-Stöckl E., Mayerhofer M., Müller M.M., Aberle S.W. Variability of cycle threshold values in an external quality assessment scheme for detection of the SARS-CoV-2 virus genome by RT-PCR. Clin. Chem. Lab. Med. 2021;59:987–994. doi: 10.1515/cclm-2020-1602. PubMed DOI
Vojtek T., Skoupil T., Fiala P., Bartušek K. Accuracy of air ion field measurement; Proceedings of the PIERS 2006 Cambridge—Progress in Electromagnetics Research Symposium; Cambridge, MA, USA. 26–29 March 2006; pp. 412–415. DOI
ANSYS. 2025. [(accessed on 31 December 2023)]. Available online: www.ansys.com.
Urban R., Drexler P., Fiala P., Nešpor D. Progress in Electromagnetics Research Symposium. PRC; Guangzhou, China: 2014. Numerical model of a large periodic structure; pp. 2350–2354.
Kikuchi H. Electrohydrodynamics in Dusty and Dirty Plasmas: Gravito-Electrodynamics and EHD. Springer; Amsterdam, The Netherlands: 2001. p. 227.
Reshetnyak S.A., Shcheglov V.A., Blagodatskikh V.I., Gariaev P.P., Maslov M.Y. Mechanisms of interaction of electromagnetic radiation with a biosystem. Laser Phys. 1996;6:621–653.
Gariaev P.P., Chudin V.I., Komissarov G.G., Berezin A.A., Vasiliev A.A. Holographic associative memory of biological systems. Proc. SPIE—Int. Soc. Opt. Eng. 1991;1621:280–291. doi: 10.1117/12.50435. DOI
Gariaev P.P., Vasiliev A.A., Berezin A.A. Holographic associative memory and information transmission by solitary waves in biological systems. Proc. SPIE—Int. Soc. Opt. Eng. 1993;1978:249–259. doi: 10.1117/12.155056. DOI
Göpel W., Hesse J., Zemel J.N., editors. Sensors—A Comprehensive Survey. Volume 1–6. VCH Verlagsgesellschaft; Weinheim, Germany: 1989.
Vojkovská R., Horká I., Tricarico E., Ďuriš Z. New record of the parthenogenetic marbled crayfish Procambarus fallax f. virginalis from Italy. Crustaceana. 2014;87:1386–1392. doi: 10.1163/15685403-00003365. DOI
Dziedzinska R., Kralik P., Šerý O. Occurrence of SARS-CoV-2 in Indoor Environments With Increased Circulation and Gathering of People. Front. Public Health. 2021;9:787841. doi: 10.3389/fpubh.2021.787841. PubMed DOI PMC
Imani R.J., Ladhani L., Pardon G., van der Wijngaart W., Robert E. The Influence of Air Flow Velocity and Particle Size on the Collection Efficiency of Passive Electrostatic Aerosol Samplers, Aerosol and Air Quality Research. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2019. pp. 195–203. DOI
Liu B.Y., Whitby K.T., Yu H.H. Electrostatic Aerosol Sampler for Light and Electron Microscopy. Rev. Sci. Instrum. 1967;38:1. doi: 10.1063/1.1720491. PubMed DOI
Foat T.G., Sellors W.J., Walker M.D., Rachwal P.A., Jones J.W., Despeyroux D.D., Coudron L., Munro I., McCluskey D.K., Tan C.K.L., et al. A prototypepersonalaerosolsamplerbasedonelectrostatic precipitationandelectrowetting-on-dielectricactuation of droplets. J. Aerosol Sci. 2016;95:43–53. doi: 10.1016/j.jaerosci.2016.01.007. DOI