Occurrence of SARS-CoV-2 in Indoor Environments With Increased Circulation and Gathering of People
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34881222
PubMed Central
PMC8648259
DOI
10.3389/fpubh.2021.787841
Knihovny.cz E-zdroje
- Klíčová slova
- RT-qPCR, SARS-CoV-2, air, fomites, indoor, surface contamination,
- MeSH
- COVID-19 * MeSH
- kontrola infekčních nemocí MeSH
- lidé MeSH
- masky MeSH
- nemocnice MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
At the time of sampling (2020/2021), the number of new cases of SARS-CoV-2-positive individuals in the Czech Republic significantly exceeded the numbers in neighboring countries and in the EU. In terms of the number of deaths, the country ranked near the top of the list. Legislative orders required wearing masks indoors, disinfecting surfaces in public places, and limiting the number of people per sales area in commercial spaces. Due to an situation, most schools and shops were closed. The entire country anticipated a total lockdown. To assess the risk to public health regarding SARS-CoV-2 transmission, air and surfaces were sampled in two public places: a post office and a shopping center. Samples were also collected at the COVID-19 unit at the local hospital. Neither air nor surface samples were positive for SARS-CoV-2 virus particles in the post office or shopping center. Positive results were found in the hospital ward, with floors being the most and highest contaminated surface. Based on our results, we believe that public places do not pose a risk in relation to SARS-CoV-2 transmission, especially when epidemiological measures to reduce transmission are followed, such as wearing masks, using disinfectant or limiting the number of customers per retail establishment.
Zobrazit více v PubMed
Ronca SE, Sturdivant RX, Barr KL, Harris D. SARS-CoV-2 viability on 16 common indoor surface finish materials. HERD. (2021) 14:49–64. 10.1177/1937586721991535 PubMed DOI
Harvey AP, Fuhrmeister ER, Cantrell ME, Pitol AK, Swarthout JM, Powers JE, et al. . Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a community setting. Environ Sci Technol Lett. (2021) 8:168–75. 10.1021/acs.estlett.0c00875 PubMed DOI PMC
Montagna MT, De Giglio O, Calia C, Pousis C, Apollonio F, Campanale C, et al. . First detection of severe acute respiratory syndrome coronavirus 2 on the surfaces of tourist-recreational facilities in Italy. Int J Environ Res Public Health. (2021) 18:3252. 10.3390/ijerph18063252 PubMed DOI PMC
Pitol AK, Julian TR. Community transmission of SARS-CoV-2 by surfaces: risks and risk reduction strategies. Environ Sci Technol Lett. (2021) 8:263–9. 10.1021/acs.estlett.0c00966 PubMed DOI
Fernández-de-Mera IG, Rodríguez Del-Río FJ, de la Fuente J, Pérez-Sancho M, Hervás D, Moreno I, et al. . Detection of environmental SARS-CoV-2 RNA in a high prevalence setting in Spain. Transbound Emerg Dis. (2021) 68:1487–92. 10.1111/tbed.13817 PubMed DOI
Ardura A, Dopico E, Fernandez S, Garcia-Vazquez E. Citizen volunteers detect SARS-CoV-2 RNA from outdoor urban fomites. Sci Total Environ. (2021) 787:147719. 10.1016/j.scitotenv.2021.147719 DOI
Parker CW, Singh N, Tighe S, Blachowicz A, Wood JM, Seuylemezian A, et al. . End-to-end protocol for the detection of SARS-CoV-2 from built environments. Msystems. (2020) 5:e00771–20. 10.1128/mSystems.00771-20 PubMed DOI PMC
Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19: Interim Guidance. World Health Organization; (2020).
Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. . Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. (2020) 323:1610–2. 10.1001/jama.2020.3227 PubMed DOI PMC
Wong JCC, Hapuarachchi HC, Arivalan S, Tien WP, Koo C, Mailepessov D, et al. . Environmental contamination of SARS-CoV-2 in a non-healthcare setting. Int J Environ Res Public Health. (2020) 18. 10.1101/2020.05.31.20107862 PubMed DOI PMC
Lewis D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning? Nature. (2021) 590:26–8. 10.1038/d41586-021-00251-4 PubMed DOI
Ma J, Qi X, Chen H, Li X, Zhang Z, Wang H, et al. . Coronavirus disease 2019 patients in earlier stages exhaled millions of severe acute respiratory syndrome coronavirus 2 per hour. Clin Infect Dis. (2021) 72:e652–e4. 10.1093/cid/ciaa1283 PubMed DOI PMC
Luo L, Liu D, Zhang H, Li Z, Zhen R, Zhang X, et al. . Air and surface contamination in non-health care settings among 641 environmental specimens of 39 COVID-19 cases. PLoS Negl Trop Dis. (2020) 14:e0008570. 10.1371/journal.pntd.0008570 PubMed DOI PMC
Liu Y, Ning Z, Chen Y, Guo M, Gali NK, Sun L, et al. . Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. (2020) 582:557–60. 10.1038/s41586-020-2271-3 PubMed DOI
Razzini K, Castrica M, Menchetti L, Maggi L, Negroni L, Orfeo NV, et al. . SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci Total Environ. (2020) 742:140540. 10.1016/j.scitotenv.2020.140540 PubMed DOI PMC
Ben-Shmuel A, Brosh-Nissimov T, Glinert I, Bar-David E, Sittner A, Poni R, et al. . Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin Microbiol Infect. (2020) 26:1658–62. 10.1016/j.cmi.2020.09.004 PubMed DOI PMC
Lednicky JA, Lauzardo M, Fan ZH, Jutla A, Tilly TB, Gangwar M, et al. . Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis. (2020) 100:476–82. 10.1016/j.ijid.2020.09.025 PubMed DOI PMC
Redmond SN, Dousa KM, Jones LD, Li DF, Cadnum JL, Navas ME, et al. . Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid contamination of surfaces on a coronavirus disease 2019 (COVID-19) ward and intensive care unit. Infect Control Hosp Epidemiol. (2021) 42:215–7. 10.1017/ice.2020.416 PubMed DOI PMC
Colaneri M, Seminari E, Piralla A, Zuccaro V, Filippo AD, Baldanti F, et al. . Lack of SARS-CoV-2 RNA environmental contamination in a tertiary referral hospital for infectious diseases in Northern Italy. J Hosp Infect. (2020) 105:474–76. 10.1016/j.jhin.2020.03.018 PubMed DOI PMC
Escudero D, Boga JA, Fernández J, Forcelledo L, Balboa S, Albillos R, et al. . SARS-CoV-2 analysis on environmental surfaces collected in an intensive care unit: keeping Ernest Shackleton's spirit. Intensive Care Med Exp. (2020) 8:68. 10.1186/s40635-020-00349-5 PubMed DOI PMC
Zhang S, Wang C, Lin M, Deng Q, Ye Y, Li Z, et al. . Analysis of the virus contamination and disinfection effect in isolation ward of patients with COVID-19. Front Public Health. (2020) 8:486. 10.3389/fpubh.2020.00486 PubMed DOI PMC
Guo ZD, Wang ZY, Zhang SF, Li X, Li L, Li C, et al. . Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, (2020). Emerg Infect Dis. (2020) 26:1583–91. 10.3201/eid2607.200885 PubMed DOI PMC
Kampf G, Todt D, Pfaender S, Steinmann E. Corrigendum to “Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents” [J Hosp Infect 104 (2020) 246-251]. J Hosp Infect. (2020) 104:246–51. 10.1016/j.jhin.2020.01.022 PubMed DOI PMC
Colaneri M, Seminari E, Novati S, Asperges E, Biscarini S, Piralla A, et al. . Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin Microbiol Infect. (2020) 26:1094.e1–e5. 10.1016/j.cmi.2020.05.009 PubMed DOI PMC
Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review
The protective effect of serum antibodies in preventing SARS-CoV-2 virus entry into cardiac muscle