The protective effect of serum antibodies in preventing SARS-CoV-2 virus entry into cardiac muscle

. 2024 Dec 31 ; 73 (S3) : S715-S725.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39808173

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with significant cardiovascular complications, including myocardial infection and pulmonary embolism. This study aims to elucidate the relationship between the presence of SARS-CoV-2 RNA in the myocardium of the left ventricle and the levels of IgG and IgM antibodies against the SARS-CoV-2 virus in deceased COVID-19 patients. We conducted a post-mortem examination on 91 individuals who succumbed to COVID-19-related complications. The presence of SARS-CoV-2 RNA in the myocardium of the left ventricle was analyzed reverse transcription real time PCR (RT-qPCR) (EliGene® COVID19 UKV/SAV RT kit, Elisabeth Pharmacon), and antibody levels in serum were analyzed by serological assays (VIDAS SARS-COV-2 IgM and VIDAS SARS-COV-2 IgG II tests, BioMérieux). Of the heart tissue samples, 44 % tested positive for SARS-CoV-2 RNA. Our findings indicate that any detectable level of IgG antibodies against SARS-CoV-2 reduces the risk of viral penetration into the myocardium by more than fourfold. Specifically, individuals with detectable levels of IgG and IgM antibodies exhibited a significantly reduced presence of SARS-CoV-2 RNA in cardiac tissues (p<0.0001 for IgG and p<0.001 for IgM). Notably, all patients who died from pulmonary embolism had elevated levels of IgG antibodies. The study underscores the protective role of IgG and IgM antibodies in preventing SARS-CoV-2 penetration into cardiac tissues. However, high antibody titers were associated with fatal outcomes such as pulmonary embolism, pointing to the intricate balance of immune response in COVID-19 pathology. Key words SARS-CoV-2, Antibody, IgG, IgM, Cardiac damage, qPCR, Pneumonia, Pulmonary embolism, Heart failure.

Zobrazit více v PubMed

Dziedzinska R, Kralik P, Šerý O. Occurrence of SARS-CoV-2 in Indoor Environments With Increased Circulation and Gathering of People. Front Public Health. 2021;9:787841. doi: 10.3389/fpubh.2021.787841. PubMed DOI PMC

Sovová K, Vašíčková P, Valášek V, Výravský D, Očenášková V, Juranová E, Bušová M, et al. SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters. Water Res X. 2024;23:100220. doi: 10.1016/j.wroa.2024.100220. PubMed DOI PMC

Saloň A, Neshev R, Teraž K, Šimunič B, Peskar M, Marušič U, Pišot S, et al. A pilot study: Exploring the influence of COVID-19 on cardiovascular physiology and retinal microcirculation. Microvasc Res. 2023;150:104588. doi: 10.1016/j.mvr.2023.104588. PubMed DOI

Šerý O, Dziedzinska R. Risk Impact of SARS-CoV-2 Coronavirus and Spike Protein on Cardiac Tissue: A Comprehensive Review. Physiol Res. 2024;73(Suppl 3):S655–S669. PubMed PMC

Falcón-Cama V, Montero-González T, Acosta-Medina EF, Guillen-Nieto G, Berlanga-Acosta J, Fernández-Ortega C, Alfonso-Falcón A, et al. Evidence of SARS-CoV-2 infection in postmortem lung, kidney, and liver samples, revealing cellular targets involved in COVID-19 pathogenesis. Arch Virol. 2023;168:96. doi: 10.1007/s00705-023-05711-y. PubMed DOI PMC

Rockwood SJ, Arzt M, Sharma A. Modeling Cardiac SARS-CoV-2 Infection with Human Pluripotent Stem Cells. Curr Cardiol Rep. 2022;24:2121–2129. doi: 10.1007/s11886-022-01813-2. PubMed DOI PMC

Marchiano S, Hsiang T-Y, Khanna A, Higashi T, Whitmore LS, Bargehr J, Davaapil H, et al. SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports. 2021;16:478–492. doi: 10.1016/j.stemcr.2021.02.008. PubMed DOI PMC

Raghavan S, Kenchappa DB, Leo MD. SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That Maintain Endothelial Barrier Integrity. Front Cardiovasc Med. 2021;8:687783. doi: 10.3389/fcvm.2021.687783. PubMed DOI PMC

Chaszczewska-Markowska M, Sagan M, Bogunia-Kubik K. The renin-angiotensin-aldosterone system (RAAS) - physiology and molecular mechanisms of functioning. Postepy Hig Med Dosw (Online) 2016;70:917–927. doi: 10.5604/17322693.1218180. PubMed DOI

Wabalo EK, Dubiwak AD, Gizaw TS, Gerema U, Kotu UG. Role of structural and functional proteins of SARS-COV-2. GSC Biol Pharm Sci. 2020;12:117–129. doi: 10.30574/gscbps.2020.12.3.0275. DOI

Martono M, Fatmawati F, Mulyanti S. Risk Factors Associated with the Severity of COVID-19. Malays J Med Sci. 2023;30:84–92. doi: 10.21315/mjms2023.30.3.7. PubMed DOI PMC

Gruzieva TS, Antonyuk OY. Analysis of risk factors for severe COVID-19. Kidneys. 2023;12:39–45. doi: 10.22141/2307-1257.12.1.2023.393. DOI

Herman-Edelstein M, Guetta T, Barnea A, Waldman M, Ben-Dor N, Barac YD, Kornowski R, et al. Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system. Cardiovasc Diabetol. 2021;20:90. doi: 10.1186/s12933-021-01275-w. PubMed DOI PMC

Hanson P, Liu-Fei F, Ng C, Minato T, Lai C, Hossain A, Chan R, et al. Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort. Lab Invest. 2022;102:1–12. doi: 10.1038/s41374-022-00799-3. PubMed DOI PMC

Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, Winkler CW, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612:758–763. doi: 10.1038/s41586-022-05542-y. PubMed DOI PMC

Pillarisetti J, Cheema MS, Haloot J, Panday M, Badin A, Mehta A, Anderson AS, Prasad A. Cardiac complications of COVID-19: Incidence and outcomes. Indian Heart J. 2022;74:170–177. doi: 10.1016/j.ihj.2022.04.008. PubMed DOI PMC

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3. PubMed DOI PMC

Van Goethem N, Chung PY, Meurisse M, Vandromme M, De Mot L, Brondeel R, Stouten V, et al. Clinical Severity of SARS-CoV-2 Omicron Variant Compared with Delta among Hospitalized COVID-19 Patients in Belgium during Autumn and Winter Season 2021–2022. Viruses. 2022;14:1297. doi: 10.3390/v14061297. PubMed DOI PMC

Ward KE, Steadman L, Karim AR, Reynolds GM, Pugh M, Chua W, Faustini SE, et al. SARS-CoV-2 infection is associated with anti-desmoglein 2 autoantibody detection. Clin Exp Immunol. 2023;213:243–251. doi: 10.1093/cei/uxad046. PubMed DOI PMC

Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43:1157–1172. doi: 10.1093/eurheartj/ehac031. PubMed DOI PMC

Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28:583–590. doi: 10.1038/s41591-022-01689-3. PubMed DOI PMC

Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020;5:1281–1285. doi: 10.1001/jamacardio.2020.3551. PubMed DOI PMC

Rajpal S, Tong MS, Borchers J, Zareba KM, Obarski TP, Simonetti OP, Daniels CJ. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection. JAMA Cardiol. 2021;6:116–118. doi: 10.1001/jamacardio.2020.4916. PubMed DOI PMC

Yang YC, Wei ZY, Xiong CM, Qian HY. Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update. Virol J. 2022;19:108. doi: 10.1186/s12985-022-01833-y. PubMed DOI PMC

Liu H, Gai S, Wang X, Zeng J, Sun C, Zhao Y, Zheng Z. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovasc Res. 2020;116:1733–1741. doi: 10.1093/cvr/cvaa191. PubMed DOI PMC

Yang Y, Wei Z, Xiong C, Qian H. Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update. Virol J. 2022;19:108. doi: 10.1186/s12985-022-01833-y. PubMed DOI PMC

Rizzo S, Lodder EM, Verkerk AO, Wolswinkel R, Beekman L, Pilichou K, Basso C, et al. Intercalated disc abnormalities, reduced Na(+) current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc Res. 2012;95:409–418. doi: 10.1093/cvr/cvs219. PubMed DOI

Ingrid A-R, Pamela S, Diana B-G, Agustin C, Alfonso M, Paula Z-A, Rosa del C, et al. Recommendations for SARS-CoV-2/COVID-19 testing: a scoping review of current guidance. BMJ Open. 2021;11:e043004. doi: 10.1136/bmjopen-2020-043004. PubMed DOI PMC

Vymazalova K, Šerý O, Kralik P, Dziedzinska R, Musilova Z, Frishons J, Vojtisek T, Joukal M. Substantial decrease in SARS-CoV-2 RNA after fixation of cadavers intended for anatomical dissection. Anat Sci Int. 2023;98:441–447. doi: 10.1007/s12565-023-00707-9. PubMed DOI PMC

Angela Q, Marascio N, Peronace C, Barreca G, Gallo L, Giancotti A, Angelo Giuseppe L, et al. Role of IgG and IgM and proinflammatory aspecific markers in the diagnosis and prognosis of COVID-19 patients stratified by number of positive SARS-CoV-2 genes. Minerva Med. 2022;114:300–306. doi: 10.23736/S0026-4806.22.08030-2. PubMed DOI

Kaduskar O, Gurav YK, Deshpande K, Desphande GR, Yadav P, Rakhe A, Tilekar BN, et al. Understanding the dynamics of IgM & IgG antibodies in COVID-19-positive patients. Indian J Med Res. 2022;155:565–569. doi: 10.4103/ijmr.IJMR_675_21. PubMed DOI PMC

Salman MA, Jasim OJ. Detection of IgM and IgG antibodies in patients with COVID-19 disease. Int J Health Sci. 2022;6:11632–11640. doi: 10.53730/ijhs.v6nS6.13240. DOI

Tsuchiya K, Maeda K, Matsuda K, Takamatsu Y, Iwamoto_Kinoshita N, Satoshi K, Hayashida T, et al. Neutralization activity of IgG antibody in COVID-19-convalescent plasma against SARS-CoV-2 variants. Sci Rep. 2023;13:1263. doi: 10.1038/s41598-023-28591-3. PubMed DOI PMC

Chansaenroj J, Yorsaeng R, Puenpa J, Wanlapakorn N, Chirathaworn C, Sudhinaraset N, Sripramote M, et al. Long-term persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific and neutralizing antibodies in recovered COVID-19 patients. PLoS One. 2022;17:e0267102. doi: 10.1371/journal.pone.0267102. PubMed DOI PMC

R: a language and environment for statistical computing. Vienna, Austria: R Core Team. R Foundation for Statistical Computing; 2019.

Tahan A, Saki N, Azizidoost S, Yousefi F, Haybar H. COVID-19 as an Aggravator of Cardiovascular Diseases: Increasing Immunoglobulin G, a Valuable Prognostic Factor for Heart Failure. Jundishapur J Microbiol. 2023;16:e139233. doi: 10.5812/jjm-139233. DOI

Li Q, Chen L, Li F, He A. Long-term evaluation of the seroprevalence of SARS-CoV-2 IgG and IgM antibodies in recovered patients: a meta-analysis. BMC Infect Dis. 2023;23:444. doi: 10.1186/s12879-023-08425-3. PubMed DOI PMC

Radziejewska J, Arkowski J, Susło R, Kȩdzierski K, Wawrzyńska M. Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland. Vaccines (Basel) 2023;11:1198. doi: 10.3390/vaccines11071198. PubMed DOI PMC

Luu IHY, Buijs J, Krdzalic J, de Kruif MD, Mostard GJM, ten Cate H, Dormans TPJ, et al. Pulmonary embolism in hospitalized COVID-19 patients: Short- and long-term clinical outcomes. Thromb Update. 2023;12:100142. doi: 10.1016/j.tru.2023.100142. PubMed DOI PMC

Vityala Y, Krishna A, Pandla D, Kanteti K, Sadhu J, Boddeti H, Kintali T, Khalid M. Pathophysiology of thromboembolism in patients with COVID-19. Eur J Clin Exp Med. 2022;20:212–216. doi: 10.15584/ejcem.2022.2.10. DOI

Salgado BB, Jordão MF, de Morais TB, da Silva DS, Pereira Filho IV, Salgado Sobrinho WB, Carvalho NO, et al. Antigen-Specific Antibody Signature Is Associated with COVID-19 Outcome. Viruses. 2023;15:1018. doi: 10.3390/v15041018. PubMed DOI PMC

Ufuk F, Savas R. COVID-19 pneumonia: lessons learned, challenges, and preparing for the future. Diagn Interv Radiol. 2023;28:576–585. doi: 10.5152/dir.2022.221881. PubMed DOI PMC

Francois S, Helissey C, Cavallero S, Drouet M, Libert N, Cosset J-M, Deutsch E, et al. COVID-19-Associated Pneumonia: Radiobiological Insights. Front Pharmacol. 2021;12:640040. doi: 10.3389/fphar.2021.640040. PubMed DOI PMC

Gong J, Dong H, Xia Q-S, Huang Z-Y, Wang D-K, Zhao Y, Liu W-H, et al. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19: a retrospective study. BMC Infect Dis. 2020;20:963. doi: 10.1186/s12879-020-05681-5. PubMed DOI PMC

Tsigkou V, Siasos G, Oikonomou E, Bletsa E, Vavouranakis M, Tousoulis D. “Heart failure in COVID-19 patients: Critical care experience”: A letter to the editor. World J Virol. 2022;11:216–220. doi: 10.5501/wjv.v11.i4.216. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...