Substantial decrease in SARS-CoV-2 RNA after fixation of cadavers intended for anatomical dissection

. 2023 Jul ; 98 (3) : 441-447. [epub] 20230304

Jazyk angličtina Země Japonsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36869879

Grantová podpora
VI04000071 Ministerstvo Vnitra České Republiky

Odkazy

PubMed 36869879
PubMed Central PMC9985082
DOI 10.1007/s12565-023-00707-9
PII: 10.1007/s12565-023-00707-9
Knihovny.cz E-zdroje

With the onset of the COVID-19 pandemic, a problem arose with classic body donation programmes for obtaining cadavers for anatomical dissections, science and research. The question has emerged whether bodies of individuals who died of COVID-19 or were infected by SARS-CoV-2 could be admitted to Departments of Anatomy. To determine the risk of SARS-CoV-2 transmission to employees or students, the presence and stability of SARS-CoV-2 RNA in cadavers after fixation agents' application and subsequent post-fixation baths over time were examined. The presence of viral RNA in swabs from selected tissues was assessed by the standardized routine RNA isolation protocol and subsequent real-time PCR analysis. To support the results obtained from the tissue swabs, samples of RNA were exposed in vitro to short and long-term exposure to the components of the injection and fixation solutions used for the bodies' conservation. Substantial removal of SARS-CoV-2 RNA was observed in post-mortem tissue following perfusion with 3.5% phenol, 2.2% formaldehyde, 11.8% glycerol and 55% ethanol, and subsequent post-fixation in an ethanol bath. In vitro experiments showed significant effects of formaldehyde on SARS-CoV-2 RNA, while phenol and ethanol showed only negligible effects. We conclude that cadavers subjected to fixation protocols as described here should not pose a considerable risk of SARS-CoV-2 infection while being handled by students and staff and are, therefore, suitable for routine anatomical dissections and teaching.

Zobrazit více v PubMed

Aquila I, Ricci P, Bonetta CF, et al. Analysis of the persistence time of the SARS-CoV-2 virus in the cadaver and the risk of passing infection to autopsy staff. Med Leg J. 2021;89:40–53. doi: 10.1177/0025817220980601. PubMed DOI

Balta JY, Cronin M, Cryan JF, O'mahony SM. Human preservation techniques in anatomy: a 21st century medical education perspective. Clin Anat. 2015;28:725–734. doi: 10.1002/ca.22585. PubMed DOI

Basak D, Deb S. Sensitivity of SARS-CoV-2 towards alcohols: potential for alcohol-related toxicity in humans. Life (basel) 2021;11:1334. PubMed PMC

Beltempo P, Curti SM, Maserati R, Gherardi M, Castelli M. Persistence of SARS-CoV-2 RNA in post-mortem swab 35 days after death: a case report. Forensic Sci Int. 2021;319:110653. doi: 10.1016/j.forsciint.2020.110653. PubMed DOI PMC

Bonelli M, Rosato E, Locatelli M, et al. Long persistence of severe acute respiratory syndrome coronavirus 2 swab positivity in a drowned corpse: a case report. J Med Case Rep. 2022 doi: 10.1186/s13256-022-03297-8. PubMed DOI PMC

Brassett C, Cosker T, Davies DC, et al. COVID-19 and anatomy: stimulus and initial response. J Anat. 2020;237:393–403. PubMed PMC

Brenner E. Human body preservation - old and new techniques. J Anat. 2014;224:316–344. doi: 10.1111/joa.12160. PubMed DOI PMC

Burke PA, Sheffner AL. The antimicrobial activity of embalming chemicals and topical disinfectants on the microbial flora of human remains. Health Lab Sci. 1976;13:267–270. PubMed

Calabrese F, Pezzuto F, Fortarezza F, et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European pulmonary pathologists. Virchows Arch. 2020;477:359–372. doi: 10.1007/s00428-020-02886-6. PubMed DOI PMC

Correia JC, Steyl JL, De Villiers HC. Assessing the survival of mycobacterium tuberculosis in unembalmed and embalmed human remains. Clin Anat. 2014;27:304–307. doi: 10.1002/ca.22355. PubMed DOI

Darnell MER, Subbarao K, Feinstone SM, Taylor DR. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods. 2004;121:85–91. doi: 10.1016/j.jviromet.2004.06.006. PubMed DOI PMC

Demiryurek D, Bayramoglu A, Ustacelebi S. Infective agents in fixed human cadavers: a brief review and suggested guidelines. Anat Rec. 2002;269:194–197. doi: 10.1002/ar.10143. PubMed DOI

Douceron H, Deforges L, Gherardi R, Sobel A, Chariot P. Long-lasting postmortem viability of human immunodeficiency virus: a potential risk in forensic medicine practice. Forensic Sci Int. 1993;60:61–66. doi: 10.1016/0379-0738(93)90093-P. PubMed DOI

Ecdc . Considerations related to the safe handling of bodies of deceased persons with suspected or confirmed COVID-19. Stockholm: European Centre for Disease Prevention and Control; 2020. pp. 1–4.

Eisma R, Wilkinson T. From "silent teachers" to models. PLoS Biol. 2014;12:e1001971. doi: 10.1371/journal.pbio.1001971. PubMed DOI PMC

Gupta J, Chaturvedi M, Patil M. Embalmed cadavers – are they safe to handle, a study to see the microbial flora present in the embalmed cadavers. Int J Pharma Biosci. 2013;4:383–386.

Hammer N, Loffler S, Feja C, et al. Ethanol-glycerin fixation with thymol conservation: a potential alternative to formaldehyde and phenol embalming. Anat Sci Educ. 2012;5:225–233. doi: 10.1002/ase.1270. PubMed DOI

Healing TD, Hoffman PN, Young SE. The infection hazards of human cadavers. Commun Dis Rep CDR Rev. 1995;5:R61–R68. PubMed

Heinrich F, Meissner K, Langenwalder F, et al. Postmortem stability of SARS-CoV-2 in nasopharyngeal mucosa. Emerg Infect Dis. 2021;27:329. doi: 10.3201/eid2701.203112. PubMed DOI PMC

Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology. 2006;212(Suppl 1):119–123. doi: 10.1159/000089211. PubMed DOI PMC

Kramer B, Billings B, Moxham B, Winkelmann A. IFAA best practice guidelines for body donation programmes during the novel coronavirus pandemic. Johannesburg, South Africa: International Federation of Associations of Anatomists; 2020.

Kratzel A, Todt D, V'kovski P,, et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg Infect Dis. 2020;26:1592–1595. doi: 10.3201/eid2607.200915. PubMed DOI PMC

Malnar M, Rezen T. Factors affecting RNA quantification from tissue long-term stored in formalin. J Pharmacol Toxicol Methods. 2019;96:61–66. doi: 10.1016/j.vascn.2019.02.002. PubMed DOI

Matsuda Y, Fujii T, Suzuki T, et al. Comparison of fixation methods for preservation of morphology, RNAs, and proteins from paraffin-embedded human cancer cell-implanted mouse models. J Histochem Cytochem. 2011;59:68–75. doi: 10.1369/jhc.2010.957217. PubMed DOI PMC

Musso N, Falzone L, Stracquadanio S, et al. Post-mortem detection of SARS-CoV-2 RNA in long-buried lung samples. Diagnostics (basel) 2021;11:1158. doi: 10.3390/diagnostics11071158. PubMed DOI PMC

Palacios-Rapalo SN, De Jesus-Gonzalez LA, Cordero-Rivera CD, et al. Cholesterol-rich lipid rafts as platforms for SARS-CoV-2 entry. Front Immunol. 2021 doi: 10.3389/fimmu.2021.796855. PubMed DOI PMC

Pfefferle S, Günther T, Puelles VG, et al. SARS-CoV-2 infects carotid arteries: implications for vascular disease and organ injury in COVID-19. bioRxiv. 2020 doi: 10.1101/2020.10.10.334458. DOI

Plenzig S, Bojkova D, Held H, et al. Infectivity of deceased COVID-19 patients. Int J Legal Med. 2021;135:2055–2060. doi: 10.1007/s00414-021-02546-7. PubMed DOI PMC

Quondamatteo F, Corzo-Leon DE, Brassett C, et al. Neutralisation of SARS-CoV-2 by anatomical embalming solutions. J Anat. 2021 doi: 10.1111/joa.13549. PubMed DOI PMC

Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;194:1–6. doi: 10.1007/s00430-004-0219-0. PubMed DOI PMC

Rabenau HF, Kampf G, Cinatl J, Doerr HW. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect. 2005;61:107–111. doi: 10.1016/j.jhin.2004.12.023. PubMed DOI PMC

Shchegolev AI, Tumanova UN. Persistence of SARS-CoV-2 in deceased patients and safe handling of infected bodies. Bulletin of Russian State Medical University; 2021. pp. 5–11.

Shoja MM, Benninger B, Agutter P, Loukas M, Tubbs RS. A historical perspective: infection from cadaveric dissection from the 18th to 20th centuries. Clin Anat. 2013;26:154–160. doi: 10.1002/ca.22169. PubMed DOI

Sirker M, Schneider PM, Gomes I. A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions. Int J Legal Med. 2016;130:1431–1438. doi: 10.1007/s00414-016-1373-9. PubMed DOI

Song HS, Li J, Shi S, Yan L, Zhuang H, Li K. Thermal stability and inactivation of hepatitis C virus grown in cell culture. Virol J. 2010 doi: 10.1186/1743-422X-7-40. PubMed DOI PMC

Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161:1961–1971. doi: 10.1016/S0002-9440(10)64472-0. PubMed DOI PMC

Su JMF, Perlaky L, Li XN, et al. Comparison of ethanol versus formalin fixation on preservation of histology and RNA in laser capture microdissected brain tissues. Brain Pathol. 2004;14:175–182. doi: 10.1111/j.1750-3639.2004.tb00050.x. PubMed DOI PMC

Tabaac B, Goldberg G, Alvarez L, Amin M, Shupe-Ricksecker K, Gomez F. Bacteria detected on surfaces of formalin fixed anatomy cadavers. Ital J Anat Embryol. 2013;118:1–5. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...