SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38628304
PubMed Central
PMC11017050
DOI
10.1016/j.wroa.2024.100220
PII: S2589-9147(24)00010-0
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, PCR, Virus, Wastewater treatment plant, Wastewater-based epidemiology,
- Publikační typ
- časopisecké články MeSH
This study presents the results of systematic wastewater monitoring of SARS-CoV-2 RNA and basic wastewater parameters from four different wastewater treatment plants (WWTPs) in the Czech Republic over the 2020-2022 epidemic. Two-step reverse-transcription quantitative PCR targeting genes encoding the N and Nsp12 proteins was employed to detect SARS-CoV-2 RNA loading in 420 wastewater samples. The results obtained were used to evaluate the potential of wastewater analysis for describing the epidemiological situation in cities of different sizes and determining temporal differences based on the prevailing SARS-CoV-2 variant. Strong correlations between the number of active and hospitalised COVID-19 cases in each WWTP catchment area and the concentration of SARS-CoV-2 RNA detected in the wastewater clearly demonstrated the suitability of this wastewater-based epidemiological approach for WWTPs of different sizes and characteristics, despite differences in SARS-CoV-2 variant waves, with some WWTPs showing high predictive potential. This study demonstrated on the data from the Czech Republic that targeted systematic monitoring of wastewater provides sufficiently robust data for surveillance of viral loads in sample populations, and thus contributes to preventing the spread of infection and subsequent introduction of appropriate measures.
Masaryk University Faculty of Science Kotlářská 267 2 611 37 Brno Czech Republic
T G Masaryk Water Research Institute Podbabská 30 160 00 Prague Czech Republic
Zobrazit více v PubMed
Acosta N., Bautista M.A., Waddell B.J., Du K., McCalder J., Pradhan P., Sedaghat N., Papparis C., Beaudet A.B., Chen J., Van Doorn J., Xiang K., Chan L., Vivas L., Low K., Lu X., Lee J., Westlund P., Chekouo T., Dai X., Cabaj J., Bhatnagar S., Ruecker N., Achari G., Clark R.G., Pearce C., Harrison J.J., Meddings J., Leal J., Ellison J., Missaghi B., Kanji J.N., Larios O., Rennert-May E., Kim J., Hrudey S.E., Lee B.E., Pang X., Frankowski K., Conly J., Hubert C.R.J., Parkins M.D. Surveillance for SARS-CoV-2 and its variants in wastewater of tertiary care hospitals correlates with increasing case burden and outbreaks. J. Med. Virol. 2023;95:e28442. doi: 10.1002/jmv.28442. PubMed DOI PMC
Acosta N., Bautista M.A., Waddell B.J., McCalder J., Beaudet A.B., Man L., Pradhan P., Sedaghat N., Papparis C., Bacanu A., Hollman J., Krusina A., Southern D.A., Williamson T., Li C., Bhatnagar S., Murphy S., Chen J., Kuzma D., Clark R., Meddings J., Hu J., Cabaj J.L., Conly J.M., Dai X., Lu X., Chekouo T., Ruecker N.J., Achari G., Ryan M.C., Frankowski K., Hubert C.R.J., Parkins M.D. Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population. Water Res. 2022;220 doi: 10.1016/j.watres.2022.118611. PubMed DOI PMC
Ahmed W., Simpson S.L., Bertsch P.M., Bibby K., Bivins A., Blackall L.L., Bofill-Mas S., Bosch A., Brandão J., Choi P.M., Ciesielski M., Donner E., D'Souza N., Farnleitner A.H., Gerrity D., Gonzalez R., Griffith J.F., Gyawali P., Haas C.N., Hamilton K.A., Hapuarachchi H.C., Harwood V.J., Haque R., Jackson G., Khan S.J., Khan W., Kitajima M., Korajkic A., La Rosa G., Layton B.A., Lipp E., McLellan S.L., McMinn B., Medema G., Metcalfe S., Meijer W.G., Mueller J.F., Murphy H., Naughton C.C., Noble R.T., Payyappat S., Petterson S., Pitkänen T., Rajal V.B., Reyneke B., Roman F.A., Rose J.B., Rusiñol M., Sadowsky M.J., Sala-Comorera L., Setoh Y.X., Sherchan S.P., Sirikanchana K., Smith W., Steele J.A., Sabburg R., Symonds E.M., Thai P., Thomas K.V., Tynan J., Toze S., Thompson J., Whiteley A.S., Wong J.C.C., Sano D., Wuertz S., Xagoraraki I., Zhang Q., Zimmer-Faust A.G., Shanks O.C. Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Sci. Total Environ. 2022;805 doi: 10.1016/j.scitotenv.2021.149877. PubMed DOI PMC
Alhamid G., Tombuloglu H., Rabaan A.A., Al-Suhaimi E. SARS-CoV-2 detection methods: a comprehensive review. Saudi J. Biol. Sci. 2022;29 doi: 10.1016/j.sjbs.2022.103465. PubMed DOI PMC
Amoah I.D., Abunama T., Awolusi O.O., Pillay L., Pillay K., Kumari S., Bux F. Effect of selected wastewater characteristics on estimation of SARS-CoV-2 viral load in wastewater. Environ. Res. 2022;203 doi: 10.1016/j.envres.2021.111877. PubMed DOI PMC
Barrios M.E., Díaz S.M., Torres C., Costamagna D.M., Blanco Fernández M.D., Mbayed V.A. Dynamics of SARS-CoV-2 in wastewater in three districts of the Buenos Aires metropolitan region, Argentina, throughout nine months of surveillance: a pilot study. Sci. Total Environ. 2021;800 doi: 10.1016/j.scitotenv.2021.149578. PubMed DOI PMC
Bertels X., Demeyer P., Van den Bogaert S., Boogaerts T., van Nuijs A.L.N., Delputte P., Lahousse L. Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: a systematic review. Sci. Total Environ. 2022;820 doi: 10.1016/j.scitotenv.2022.153290. PubMed DOI PMC
Dunn O.J. Multiple comparisons using rank sums. Technometrics. 1964;6:241–252. doi: 10.1080/00401706.1964.10490181. DOI
Girum T., Lentiro K., Geremew M., Migora B., Shewamare S. Global strategies and effectiveness for COVID-19 prevention through contact tracing, screening, quarantine, and isolation: a systematic review. Trop. Med. Health. 2020;48:91. doi: 10.1186/s41182-020-00285-w. PubMed DOI PMC
Hart O.E., Halden R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020;730 doi: 10.1016/j.scitotenv.2020.138875. PubMed DOI PMC
Hewitt J., Trowsdale S., Armstrong B.A., Chapman J.R., Carter K.M., Croucher D.M., Trent C.R., Sim R.E., Gilpin B.J. Sensitivity of wastewater-based epidemiology for detection of SARS-CoV-2 RNA in a low prevalence setting. Water Res. 2022;211 doi: 10.1016/j.watres.2021.118032. PubMed DOI PMC
Kassambara, A., 2023. ggpubr: “ggplot2” Based Publication Ready Plots. https://cran.r-project.org/web/packages/ggpubr/index.html.
Komenda M., Bulhart V., Karolyi M., Jarkovský J., Mužík J., Májek O., Šnajdrová L., Růžičková P., Rážová J., Prymula R., Macková B., Březovský P., Marounek J., Černý V., Dušek L. Complex reporting of the COVID-19 epidemic in the Czech republic: use of an interactive web-based app in practice. J. Med. Internet Res. 2020;22:e19367. doi: 10.2196/19367. PubMed DOI PMC
Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952;47:583–621. doi: 10.1080/01621459.1952.10483441. DOI
Li Q., Lee B.E., Gao T., Qiu Y., Ellehoj E., Yu J., Diggle M., Tipples G., Maal-Bared R., Hinshaw D., Sikora C., Ashbolt N.J., Talbot J., Hrudey S.E., Pang X. Number of COVID-19 cases required in a population to detect SARS-CoV-2 RNA in wastewater in the province of Alberta, Canada: sensitivity assessment. J. Environ. Sci. 2023;125:843–850. doi: 10.1016/j.jes.2022.04.047. PubMed DOI PMC
Li X., Zhang S., Shi J., Luby S.P., Jiang G. Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chem. Eng. J. 2021;415 doi: 10.1016/j.cej.2021.129039. PubMed DOI PMC
López-Peñalver R.S., Cañas-Cañas R., Casaña-Mohedo J., Benavent-Cervera J.V., Fernández-Garrido J., Juárez-Vela R., Pellín-Carcelén A., Gea-Caballero V., Andreu-Fernández V. Predictive potential of SARS-CoV-2 RNA concentration in wastewater to assess the dynamics of COVID-19 clinical outcomes and infections. Sci. Total Environ. 2023;886 doi: 10.1016/j.scitotenv.2023.163935. PubMed DOI PMC
Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020;7:511–516. doi: 10.1021/acs.estlett.0c00357. PubMed DOI
Mlejnkova H., Sovova K., Vasickova P., Ocenaskova V., Jasikova L., Juranova E. Preliminary study of SARS-CoV-2 occurrence in wastewater in the Czech Republic. IJERPH. 2020;17:5508. doi: 10.3390/ijerph17155508. PubMed DOI PMC
Mohapatra S., Bhatia S., Senaratna K.Y.K., Jong M.-C., Lim C.M.B., Gangesh G.R., Lee J.X., Giek G.S., Cheung C., Yutao L., Luhua Y., Yong N.H., Peng L.C., Wong J.C.C., Ching N.L., Gin K.Y.-H. Wastewater surveillance of SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID-19 pandemic. J. Hazard. Mater. 2023;446 doi: 10.1016/j.jhazmat.2022.130690. PubMed DOI PMC
O'Keeffe J. Wastewater-based epidemiology: current uses and future opportunities as a public health surveillance tool. Environ. Health Rev. 2021;64:44–52. doi: 10.5864/d2021-015. DOI
Oran D.P., Topol E.J. The proportion of SARS-CoV-2 Infections that are asymptomatic: a systematic review. Ann. Intern. Med. 2021;174:655–662. doi: 10.7326/M20-6976. PubMed DOI PMC
Pang X., Gao T., Ellehoj E., Li Q., Qiu Y., Maal-Bared R., Sikora C., Tipples G., Diggle M., Hinshaw D., Ashbolt N.J., Talbot J., Hrudey S.E., Lee B.E. Wastewater-based surveillance is an effective tool for trending COVID-19 prevalence in communities: a study of 10 major communities for 17 months in Alberta. ACS EST Water. 2022;2:2243–2254. doi: 10.1021/acsestwater.2c00143. PubMed DOI PMC
Paul D., Kolar P., Hall S.G. A review of the impact of environmental factors on the fate and transport of coronaviruses in aqueous environments. NPJ Clean Water. 2021;4:7. doi: 10.1038/s41545-020-00096-w. DOI
Polo D., Quintela-Baluja M., Corbishley A., Jones D.L., Singer A.C., Graham D.W., Romalde J.L. Making waves: wastewater-based epidemiology for COVID-19 – approaches and challenges for surveillance and prediction. Water Res. 2020;186 doi: 10.1016/j.watres.2020.116404. PubMed DOI PMC
Rusiñol M., Zammit I., Itarte M., Forés E., Martínez-Puchol S., Girones R., Borrego C., Corominas Ll., Bofill-Mas S. Monitoring waves of the COVID-19 pandemic: inferences from WWTPs of different sizes. Sci. Total Environ. 2021;787 doi: 10.1016/j.scitotenv.2021.147463. PubMed DOI PMC
Vašíčková P., Hrdý J., Krásna M., Sovová K., Gharwalová L., Mlejnková H. Methodology Approved by the Ministry of Health of the Czech Republic. Veterinary Research Institute; Brno: 2023. Methodological procedure of wastewater analysis for the presence of specific regions of the genome of SARS-CoV-2 virus. p.r.i., 27 p. 141/2022ISBN 978-80-7672-021-3.
Vasickova P., Kralik P., Slana I., Pavlik I. Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J. Virol. Methods. 2012;180:38–42. doi: 10.1016/j.jviromet.2011.12.007. PubMed DOI
Vemulapalli R., Gulani J., Santrich C. A real-time TaqMan® RT-PCR assay with an internal amplification control for rapid detection of transmissible gastroenteritis virus in swine fecal samples. J. Virol. Methods. 2009;162:231–235. doi: 10.1016/j.jviromet.2009.08.016. PubMed DOI PMC
Wartell B.A., Ballare S., Ghandehari S.S., Arcellana P.D., Proano C., Kaya D., Niemeier D., Kjellerup B.V. Relationship between SARS-CoV-2 in wastewater and clinical data from five wastewater sheds. J. Hazardous Mater. Adv. 2022;8 doi: 10.1016/j.hazadv.2022.100159. PubMed DOI PMC
WHO, 2023. WHO Health Emergency dashboard. https://covid19.who.int.
Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158:1831–1833. doi: 10.1053/j.gastro.2020.02.055. e3. PubMed DOI PMC
Zhan Q., Babler K.M., Sharkey M.E., Amirali A., Beaver C.C., Boone M.M., Comerford S., Cooper D., Cortizas E.M., Currall B.B., Foox J., Grills G.S., Kobetz E., Kumar N., Laine J., Lamar W.E., Mantero A.M.A., Mason C.E., Reding B.D., Robertson M., Roca M.A., Ryon K., Schürer S.C., Shukla B.S., Solle N.S., Stevenson M., Tallon J.J., Jr, Thomas C., Thomas T., Vidović D., Williams S.L., Yin X., Solo-Gabriele H.M. Relationships between SARS-CoV-2 in Wastewater and COVID-19 clinical cases and hospitalizations, with and without normalization against indicators of human waste. ACS EST Water. 2022;2:1992–2003. doi: 10.1021/acsestwater.2c00045. PubMed DOI PMC
The protective effect of serum antibodies in preventing SARS-CoV-2 virus entry into cardiac muscle