Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering

. 2021 Feb 18 ; 11 (2) : . [epub] 20210218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33670727

Grantová podpora
DAAD - ID 57381327 Deutscher Akademischer Austauschdienst
(LIA)MINOS project International associated laboratory LA(MINOS)
HSRW-Promotionsstipendiums Rhine-Waal University of Applied Sciences
824007 Research and Innovation Staff Exchange program
19-72-30012 Russian Science Foundation

Herein, we report the fabrication and characterization of novel polycaprolactone (PCL)-based nanofibers functionalized with bare (ligand-free) titanium nitride (TiN) nanoparticles (NPs) for tissue engineering applications. Nanofibers were prepared by a newly developed protocol based on the electrospinning of PCL solutions together with TiN NPs synthesized by femtosecond laser ablation in acetone. The generated hybrid nanofibers were characterised using spectroscopy, microscopy, and thermal analysis techniques. As shown by scanning electron microscopy measurements, the fabricated electrospun nanofibers had uniform morphology, while their diameter varied between 0.403 ± 0.230 µm and 1.1 ± 0.15 µm by optimising electrospinning solutions and parameters. Thermal analysis measurements demonstrated that the inclusion of TiN NPs in nanofibers led to slight variation in mass degradation initiation and phase change behaviour (Tm). In vitro viability tests using the incubation of 3T3 fibroblast cells in a nanofiber-based matrix did not reveal any adverse effects, confirming the biocompatibility of hybrid nanofiber structures. The generated hybrid nanofibers functionalized with plasmonic TiN NPs are promising for the development of smart scaffold for tissue engineering platforms and open up new avenues for theranostic applications.

Zobrazit více v PubMed

Wu T.-J., Chiu H.-Y., Yu J., Cautela M.P., Sarmento B., das Neves J., Catala C., Pazos-Perez N., Guerrini L., Alvarez-Puebla R.A., et al. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. In: Uskoković V., Uskoković D.P., editors. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2018. pp. 1–92.

Singh S., Ashfaq M., Singh R.K., Joshi H.C., Srivastava A., Sharma A., Verma N. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. N. Biotechnol. 2013;30:656–665. doi: 10.1016/j.nbt.2013.05.002. PubMed DOI

Alismail H., Du Y., Zhou J., Ryan Tian Z. A cell-sensory bioscaffold of biocompatible titanate nanofiber; Proceedings of the TechConnect Briefs 2018—Advanced Materials; Anaheim, CA, USA. 13–16 May 2018; pp. 42–45. TechConnect.

Bizarria M.T.M., D’Ávila M.A., Mei L.H.I. Non-woven nanofiber chitosan/PEO membranes obtained by electrospinning. Braz. J. Chem. Eng. 2014;31:57–68. doi: 10.1590/S0104-66322014000100007. DOI

Gu B.K., Park S.J., Kim M.S., Kang C.M., Kim J.I., Kim C.H. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr. Polym. 2013;97:65–73. doi: 10.1016/j.carbpol.2013.04.060. PubMed DOI

Lim H.S., Baek J.H., Park K., Shin H.S., Kim J., Cho J.H. Multifunctional hybrid fabrics with thermally stable superhydrophobicity. Adv. Mater. 2010;22:2138–2141. doi: 10.1002/adma.200903074. PubMed DOI

Khayet M., García-Payo C., Matsuura T. Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation. J. Memb. Sci. 2019;588:117215. doi: 10.1016/j.memsci.2019.117215. DOI

Blakney A.K., Ball C., Krogstad E.A., Woodrow K.A. Electrospun fibers for vaginal anti-HIV drug delivery. Antiviral Res. 2013;100:S9–S16. doi: 10.1016/j.antiviral.2013.09.022. PubMed DOI

Nirwan V.P., Pandey S., Hey-Hawkins E., Fahmi A. Hybrid 2D nanofibers based on poly(ethylene oxide)/polystyrene matrix and poly(ferrocenylphosphinoboranes) as functional agents. J. Appl. Polym. Sci. 2020;137:49091. doi: 10.1002/app.49091. DOI

Chen S., Cui S., Hu J., Zhou Y., Liu Y. Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydr. Polym. 2017;174:591–600. doi: 10.1016/j.carbpol.2017.06.096. PubMed DOI

Hamano F., Seki H., Ke M., Gopiraman M., Lim C.T., Kim I.S. Cellulose acetate nanofiber mat with honeycomb-like surface structure. Mater. Lett. 2016;169:33–36. doi: 10.1016/j.matlet.2015.11.069. DOI

Maftoonazad N., Ramaswamy H. Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab) Polym. Test. 2019;75:76–84. doi: 10.1016/j.polymertesting.2019.01.011. DOI

Kim J.W., Kim M.J., Ki C.S., Kim H.J., Park Y.H. Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: Implications for skin graft. Int. J. Biol. Macromol. 2017;105:541–548. doi: 10.1016/j.ijbiomac.2017.07.067. PubMed DOI

Patel H., Bonde M., Srinivasan G. Biodegradable polymer scaffold for tissue engineering. Trends Biomater. Artif. Organs. 2011;25:20–29.

Sang Y., Gu Q., Sun T., Li F., Liang C. Filtration by a novel nanofiber membrane and alumina adsorption to remove copper(II) from groundwater. J. Hazard. Mater. 2008;153:860–866. doi: 10.1016/j.jhazmat.2007.09.035. PubMed DOI

Cui Y., Li B., He H., Zhou W., Chen B., Qian G. Metal–Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016;49:483–493. doi: 10.1021/acs.accounts.5b00530. PubMed DOI

Xie Z., Paras C.B., Weng H., Punnakitikashem P., Su L.-C., Vu K., Tang L., Yang J., Nguyen K.T. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013;9:9351–9359. doi: 10.1016/j.actbio.2013.07.030. PubMed DOI PMC

Xiang J., Li X., Ma Y., Zhao Q., Ho C.-L., Wong W.-Y. Efficient flash memory devices based on non-conjugated ferrocene-containing copolymers. J. Mater. Chem. C. 2018;6:11348–11355. doi: 10.1039/C8TC03140A. DOI

Lyu J., Wang X., Liu L., Kim Y., Tanyi E.K., Chi H., Feng W., Xu L., Li T., Noginov M.A., et al. High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Adv. Funct. Mater. 2016;26:8435–8445. doi: 10.1002/adfm.201603230. DOI

Ji L., Lin Z., Medford A.J., Zhang X. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon N. Y. 2009;47:3346–3354. doi: 10.1016/j.carbon.2009.08.002. DOI

Líbalová H., Costa P.M., Olsson M., Farcal L., Ortelli S., Blosi M., Topinka J., Costa A.L., Fadeel B. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Chemosphere. 2018;196:482–493. doi: 10.1016/j.chemosphere.2017.12.182. PubMed DOI

Kabashin A.V., Delaporte P., Grojo D., Torres R., Sarnet T., Sentis M. Nanofabrication with Pulsed Lasers. Nanoscale Res. Lett. 2010;5:454–463. doi: 10.1007/s11671-010-9543-z. PubMed DOI PMC

Zhang D., Gökce B., Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017;117:3990–4103. doi: 10.1021/acs.chemrev.6b00468. PubMed DOI

Geohegan D.B., Puretzky A.A., Duscher G., Pennycook S.J. Time-Resolved Imaging of Gas Phase Nanoparticle Synthesis by Laser Ablation. Appl. Phys. Lett. 1998;72:2987–2989. doi: 10.1063/1.121516. DOI

Kabashin A.V., Meunier M., Leonelli R. Photoluminescence Characterization of Si-Based Nanostructured Films Produced by Pulsed Laser Ablation. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2001;19:2217–2222. doi: 10.1116/1.1420494. DOI

Kabashin A.V., Meunier M. Laser-Induced Treatment of Silicon in Air and Formation of Si/SiOx Photoluminescent Nanostructured Layers. Mater. Sci. Eng. B. 2003;101:60–64. doi: 10.1016/S0921-5107(02)00651-7. DOI

Kabashin A.V., Timoshenko V.Y. What Theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine. 2016;11:2247–2250. doi: 10.2217/nnm-2016-0228. PubMed DOI

Kabashin A.V., Singh A., Swihart M.T., Zavestovskaya I.N., Prasad P.N. Laser-processed nanosilicon: A multifunctional nanomaterial for energy and healthcare. ACS Nano. 2019;13:9841–9867. doi: 10.1021/acsnano.9b04610. PubMed DOI

Baati T., Al-Kattan A., Esteve M.A., Njim L., Ryabchikov Y., Chaspoul F., Hammami M., Sentis M., Kabashin A.V., Braguer D. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: In vivo assessment of safety and biodistribution. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep25400. PubMed DOI PMC

Al-Kattan A., Ryabchikov Y.V., Baati T., Chirvony V., Sánchez-Royo J.F., Sentis M., Braguer D., Timoshenko V.Y., Estève M.-A., Kabashin A.V. Ultrapure Laser-Synthesized Si Nanoparticles with Variable Oxidation States for Biomedical Applications. J. Mater. Chem. B. 2016;4:7852–7858. doi: 10.1039/C6TB02623K. PubMed DOI

Bailly A.-L., Correard F., Popov A., Tselikov G., Chaspoul F., Appay R., Al-Kattan A., Kabashin A.V., Braguer D., Esteve M.-A. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 2019;9:12890. doi: 10.1038/s41598-019-48748-3. PubMed DOI PMC

Al-Kattan A., Nirwan V.P., Popov A., Ryabchikov Y.V., Tselikov G., Sentis M., Fahmi A., Kabashin A.V. Recent advances in laser-ablative synthesis of bare Au and Si nanoparticles and assessment of their prospects for tissue engineering applications. Int. J. Mol. Sci. 2018;19:1563. doi: 10.3390/ijms19061563. PubMed DOI PMC

Al-Kattan A., Nirwan V.P., Munnier E., Chourpa I., Fahmi A., Kabashin A.V. Toward multifunctional hybrid platforms for tissue engineering based on chitosan(PEO) nanofibers functionalized by bare laser-synthesized Au and Si nanoparticles. RSC Adv. 2017;7:31759–31766. doi: 10.1039/C7RA02255G. DOI

Nirwan V.P., Al-Kattan A., Fahmi A., Kabashin A.V. Fabrication of Stable Nanofiber Matrices for Tissue Engineering via Electrospinning of Bare Laser-Synthesized Au Nanoparticles in Solutions of High Molecular Weight Chitosan. Nanomaterials. 2019;9:1058. doi: 10.3390/nano9081058. PubMed DOI PMC

Nirwan V.P., Al-Kattan A., Kabashin A., Fahmi A. Electrospun PEO/Chitosan Nanofibers Templated with Gold Nanoparticles Prepared with Laser and Wet Synthesis; Proceedings of the 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP); Zatoka, Ukraine. 9–14 September 2018; pp. 1–4.

Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013;49:780–792. doi: 10.1016/j.eurpolymj.2012.12.009. DOI

Hajiali F., Tajbakhsh S., Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym. Rev. 2018;58:164–207. doi: 10.1080/15583724.2017.1332640. DOI

Contreras-Cáceres R., Cabeza L., Perazzoli G., Díaz A., López-Romero J.M., Melguizo C., Prados J. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials. 2019;9:656. doi: 10.3390/nano9040656. PubMed DOI PMC

Yahia S., Khalil I.A., El-Sherbiny I.M. Sandwich-Like Nanofibrous Scaffolds for Bone Tissue Regeneration. ACS Appl. Mater. Interfaces. 2019;11:28610–28620. doi: 10.1021/acsami.9b06359. PubMed DOI

Popov A.A., Tselikov G., Dumas N., Berard C., Metwally K., Jones N., Al-Kattan A., Larrat B., Braguer D., Mensah S., et al. Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications. Sci. Rep. 2019;9:1194. doi: 10.1038/s41598-018-37519-1. PubMed DOI PMC

Zelepukin I.V., Popov A.A., Shipunova V.O., Tikhonowski G.V., Mirkasymov A.B., Popova-Kuznetsova E.A., Klimentov S.M., Kabashin A.V., Deyev S.M. Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Mater. Sci. Eng. C. 2021;120:111717. doi: 10.1016/j.msec.2020.111717. PubMed DOI

Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC

Agarwal S., Greiner A., Wendorff J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013;38:963–991. doi: 10.1016/j.progpolymsci.2013.02.001. DOI

Kim M., Hwang S., Yu J.-S. Novel ordered nanoporous graphitic C 3 N 4 as a support for Pt–Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007;17:1656–1659. doi: 10.1039/B702213A. DOI

Rounaghi S.A., Vanpoucke D.E.P., Eshghi H., Scudino S., Esmaeili E., Oswald S., Eckert J. Mechanochemical synthesis of nanostructured metal nitrides, carbonitrides and carbon nitride: A combined theoretical and experimental study. Phys. Chem. Chem. Phys. 2017;19:12414–12424. doi: 10.1039/C7CP00998D. PubMed DOI

Abdelrazek E.M., Hezma A.M., El-khodary A., Elzayat A.M. Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J. Basic Appl. Sci. 2016;3:10–15. doi: 10.1016/j.ejbas.2015.06.001. DOI

Tian J., Wong K.K.Y., Ho C.-M., Lok C.-N., Yu W.-Y., Che C.-M., Chiu J.-F., Tam P.K.H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem. 2007;2:129–136. doi: 10.1002/cmdc.200600171. PubMed DOI

Ali S., Morsy R., El-Zawawy N., Fareed M., Bedaiwy M. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): A novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomed. 2017;12:6059–6073. doi: 10.2147/IJN.S141201. PubMed DOI PMC

Grande F., Tucci P. Titanium Dioxide Nanoparticles: A Risk for Human Health? Mini Rev. Med. Chem. 2016;16:762–769. doi: 10.2174/1389557516666160321114341. PubMed DOI

Allegri M., Bianchi M.G., Chiu M., Varet J., Costa A.L., Ortelli S., Blosi M., Bussolati O., Poland C.A., Bergamaschi E. Shape-related toxicity of titanium dioxide nanofibres. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0151365. PubMed DOI PMC

Hamilton R.F., Buford M., Xiang C., Wu N., Holian A. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal. Toxicol. 2012;24:995–1008. doi: 10.3109/08958378.2012.745633. PubMed DOI PMC

Gotman I., Gutmanas E.Y., Hunter G. Comprehensive Biomaterials II. Elsevier; Oxford, UK: 2017. 1.8 Wear-Resistant Ceramic Films and Coatings; pp. 165–203.

Hyde G.K., McCullen S.D., Jeon S., Stewart S.M., Jeon H., Loboa E.G., Parsons G.N. Atomic layer deposition and biocompatibility of titanium nitride nano-coatings on cellulose fiber substrates. Biomed. Mater. 2009;4:025001. doi: 10.1088/1748-6041/4/2/025001. PubMed DOI

Paschoal A.L., Vanâncio E.C., de Canale L.C.F., da Silva O.L., Huerta-Vilca D., de Motheo A.J. Metallic Biomaterials TiN-Coated: Corrosion Analysis and Biocompatibility. Artif. Organs. 2003;27:461–464. doi: 10.1046/j.1525-1594.2003.07241.x. PubMed DOI

Baronzio G.F., Hager E.D. Hyperthermia in Cancer Treatment: A Primer. Springer US; Boston, MA, USA: 2006.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advances in Electrospun Hybrid Nanofibers for Biomedical Applications

. 2022 May 27 ; 12 (11) : . [epub] 20220527

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...