Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DAAD - ID 57381327
Deutscher Akademischer Austauschdienst
(LIA)MINOS project
International associated laboratory LA(MINOS)
HSRW-Promotionsstipendiums
Rhine-Waal University of Applied Sciences
824007
Research and Innovation Staff Exchange program
19-72-30012
Russian Science Foundation
PubMed
33670727
PubMed Central
PMC7922954
DOI
10.3390/nano11020519
PII: nano11020519
Knihovny.cz E-zdroje
- Klíčová slova
- TiN nanoparticles, biocompatibility, electrospinning, nanofibers, polycaprolactone (PCL), pulsed laser ablation in liquids, scaffold for tissue engineering, theranostics,
- Publikační typ
- časopisecké články MeSH
Herein, we report the fabrication and characterization of novel polycaprolactone (PCL)-based nanofibers functionalized with bare (ligand-free) titanium nitride (TiN) nanoparticles (NPs) for tissue engineering applications. Nanofibers were prepared by a newly developed protocol based on the electrospinning of PCL solutions together with TiN NPs synthesized by femtosecond laser ablation in acetone. The generated hybrid nanofibers were characterised using spectroscopy, microscopy, and thermal analysis techniques. As shown by scanning electron microscopy measurements, the fabricated electrospun nanofibers had uniform morphology, while their diameter varied between 0.403 ± 0.230 µm and 1.1 ± 0.15 µm by optimising electrospinning solutions and parameters. Thermal analysis measurements demonstrated that the inclusion of TiN NPs in nanofibers led to slight variation in mass degradation initiation and phase change behaviour (Tm). In vitro viability tests using the incubation of 3T3 fibroblast cells in a nanofiber-based matrix did not reveal any adverse effects, confirming the biocompatibility of hybrid nanofiber structures. The generated hybrid nanofibers functionalized with plasmonic TiN NPs are promising for the development of smart scaffold for tissue engineering platforms and open up new avenues for theranostic applications.
Zobrazit více v PubMed
Wu T.-J., Chiu H.-Y., Yu J., Cautela M.P., Sarmento B., das Neves J., Catala C., Pazos-Perez N., Guerrini L., Alvarez-Puebla R.A., et al. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. In: Uskoković V., Uskoković D.P., editors. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2018. pp. 1–92.
Singh S., Ashfaq M., Singh R.K., Joshi H.C., Srivastava A., Sharma A., Verma N. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. N. Biotechnol. 2013;30:656–665. doi: 10.1016/j.nbt.2013.05.002. PubMed DOI
Alismail H., Du Y., Zhou J., Ryan Tian Z. A cell-sensory bioscaffold of biocompatible titanate nanofiber; Proceedings of the TechConnect Briefs 2018—Advanced Materials; Anaheim, CA, USA. 13–16 May 2018; pp. 42–45. TechConnect.
Bizarria M.T.M., D’Ávila M.A., Mei L.H.I. Non-woven nanofiber chitosan/PEO membranes obtained by electrospinning. Braz. J. Chem. Eng. 2014;31:57–68. doi: 10.1590/S0104-66322014000100007. DOI
Gu B.K., Park S.J., Kim M.S., Kang C.M., Kim J.I., Kim C.H. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr. Polym. 2013;97:65–73. doi: 10.1016/j.carbpol.2013.04.060. PubMed DOI
Lim H.S., Baek J.H., Park K., Shin H.S., Kim J., Cho J.H. Multifunctional hybrid fabrics with thermally stable superhydrophobicity. Adv. Mater. 2010;22:2138–2141. doi: 10.1002/adma.200903074. PubMed DOI
Khayet M., García-Payo C., Matsuura T. Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation. J. Memb. Sci. 2019;588:117215. doi: 10.1016/j.memsci.2019.117215. DOI
Blakney A.K., Ball C., Krogstad E.A., Woodrow K.A. Electrospun fibers for vaginal anti-HIV drug delivery. Antiviral Res. 2013;100:S9–S16. doi: 10.1016/j.antiviral.2013.09.022. PubMed DOI
Nirwan V.P., Pandey S., Hey-Hawkins E., Fahmi A. Hybrid 2D nanofibers based on poly(ethylene oxide)/polystyrene matrix and poly(ferrocenylphosphinoboranes) as functional agents. J. Appl. Polym. Sci. 2020;137:49091. doi: 10.1002/app.49091. DOI
Chen S., Cui S., Hu J., Zhou Y., Liu Y. Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydr. Polym. 2017;174:591–600. doi: 10.1016/j.carbpol.2017.06.096. PubMed DOI
Hamano F., Seki H., Ke M., Gopiraman M., Lim C.T., Kim I.S. Cellulose acetate nanofiber mat with honeycomb-like surface structure. Mater. Lett. 2016;169:33–36. doi: 10.1016/j.matlet.2015.11.069. DOI
Maftoonazad N., Ramaswamy H. Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab) Polym. Test. 2019;75:76–84. doi: 10.1016/j.polymertesting.2019.01.011. DOI
Kim J.W., Kim M.J., Ki C.S., Kim H.J., Park Y.H. Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: Implications for skin graft. Int. J. Biol. Macromol. 2017;105:541–548. doi: 10.1016/j.ijbiomac.2017.07.067. PubMed DOI
Patel H., Bonde M., Srinivasan G. Biodegradable polymer scaffold for tissue engineering. Trends Biomater. Artif. Organs. 2011;25:20–29.
Sang Y., Gu Q., Sun T., Li F., Liang C. Filtration by a novel nanofiber membrane and alumina adsorption to remove copper(II) from groundwater. J. Hazard. Mater. 2008;153:860–866. doi: 10.1016/j.jhazmat.2007.09.035. PubMed DOI
Cui Y., Li B., He H., Zhou W., Chen B., Qian G. Metal–Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016;49:483–493. doi: 10.1021/acs.accounts.5b00530. PubMed DOI
Xie Z., Paras C.B., Weng H., Punnakitikashem P., Su L.-C., Vu K., Tang L., Yang J., Nguyen K.T. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013;9:9351–9359. doi: 10.1016/j.actbio.2013.07.030. PubMed DOI PMC
Xiang J., Li X., Ma Y., Zhao Q., Ho C.-L., Wong W.-Y. Efficient flash memory devices based on non-conjugated ferrocene-containing copolymers. J. Mater. Chem. C. 2018;6:11348–11355. doi: 10.1039/C8TC03140A. DOI
Lyu J., Wang X., Liu L., Kim Y., Tanyi E.K., Chi H., Feng W., Xu L., Li T., Noginov M.A., et al. High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Adv. Funct. Mater. 2016;26:8435–8445. doi: 10.1002/adfm.201603230. DOI
Ji L., Lin Z., Medford A.J., Zhang X. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon N. Y. 2009;47:3346–3354. doi: 10.1016/j.carbon.2009.08.002. DOI
Líbalová H., Costa P.M., Olsson M., Farcal L., Ortelli S., Blosi M., Topinka J., Costa A.L., Fadeel B. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Chemosphere. 2018;196:482–493. doi: 10.1016/j.chemosphere.2017.12.182. PubMed DOI
Kabashin A.V., Delaporte P., Grojo D., Torres R., Sarnet T., Sentis M. Nanofabrication with Pulsed Lasers. Nanoscale Res. Lett. 2010;5:454–463. doi: 10.1007/s11671-010-9543-z. PubMed DOI PMC
Zhang D., Gökce B., Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017;117:3990–4103. doi: 10.1021/acs.chemrev.6b00468. PubMed DOI
Geohegan D.B., Puretzky A.A., Duscher G., Pennycook S.J. Time-Resolved Imaging of Gas Phase Nanoparticle Synthesis by Laser Ablation. Appl. Phys. Lett. 1998;72:2987–2989. doi: 10.1063/1.121516. DOI
Kabashin A.V., Meunier M., Leonelli R. Photoluminescence Characterization of Si-Based Nanostructured Films Produced by Pulsed Laser Ablation. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2001;19:2217–2222. doi: 10.1116/1.1420494. DOI
Kabashin A.V., Meunier M. Laser-Induced Treatment of Silicon in Air and Formation of Si/SiOx Photoluminescent Nanostructured Layers. Mater. Sci. Eng. B. 2003;101:60–64. doi: 10.1016/S0921-5107(02)00651-7. DOI
Kabashin A.V., Timoshenko V.Y. What Theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine. 2016;11:2247–2250. doi: 10.2217/nnm-2016-0228. PubMed DOI
Kabashin A.V., Singh A., Swihart M.T., Zavestovskaya I.N., Prasad P.N. Laser-processed nanosilicon: A multifunctional nanomaterial for energy and healthcare. ACS Nano. 2019;13:9841–9867. doi: 10.1021/acsnano.9b04610. PubMed DOI
Baati T., Al-Kattan A., Esteve M.A., Njim L., Ryabchikov Y., Chaspoul F., Hammami M., Sentis M., Kabashin A.V., Braguer D. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: In vivo assessment of safety and biodistribution. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep25400. PubMed DOI PMC
Al-Kattan A., Ryabchikov Y.V., Baati T., Chirvony V., Sánchez-Royo J.F., Sentis M., Braguer D., Timoshenko V.Y., Estève M.-A., Kabashin A.V. Ultrapure Laser-Synthesized Si Nanoparticles with Variable Oxidation States for Biomedical Applications. J. Mater. Chem. B. 2016;4:7852–7858. doi: 10.1039/C6TB02623K. PubMed DOI
Bailly A.-L., Correard F., Popov A., Tselikov G., Chaspoul F., Appay R., Al-Kattan A., Kabashin A.V., Braguer D., Esteve M.-A. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 2019;9:12890. doi: 10.1038/s41598-019-48748-3. PubMed DOI PMC
Al-Kattan A., Nirwan V.P., Popov A., Ryabchikov Y.V., Tselikov G., Sentis M., Fahmi A., Kabashin A.V. Recent advances in laser-ablative synthesis of bare Au and Si nanoparticles and assessment of their prospects for tissue engineering applications. Int. J. Mol. Sci. 2018;19:1563. doi: 10.3390/ijms19061563. PubMed DOI PMC
Al-Kattan A., Nirwan V.P., Munnier E., Chourpa I., Fahmi A., Kabashin A.V. Toward multifunctional hybrid platforms for tissue engineering based on chitosan(PEO) nanofibers functionalized by bare laser-synthesized Au and Si nanoparticles. RSC Adv. 2017;7:31759–31766. doi: 10.1039/C7RA02255G. DOI
Nirwan V.P., Al-Kattan A., Fahmi A., Kabashin A.V. Fabrication of Stable Nanofiber Matrices for Tissue Engineering via Electrospinning of Bare Laser-Synthesized Au Nanoparticles in Solutions of High Molecular Weight Chitosan. Nanomaterials. 2019;9:1058. doi: 10.3390/nano9081058. PubMed DOI PMC
Nirwan V.P., Al-Kattan A., Kabashin A., Fahmi A. Electrospun PEO/Chitosan Nanofibers Templated with Gold Nanoparticles Prepared with Laser and Wet Synthesis; Proceedings of the 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP); Zatoka, Ukraine. 9–14 September 2018; pp. 1–4.
Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013;49:780–792. doi: 10.1016/j.eurpolymj.2012.12.009. DOI
Hajiali F., Tajbakhsh S., Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym. Rev. 2018;58:164–207. doi: 10.1080/15583724.2017.1332640. DOI
Contreras-Cáceres R., Cabeza L., Perazzoli G., Díaz A., López-Romero J.M., Melguizo C., Prados J. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials. 2019;9:656. doi: 10.3390/nano9040656. PubMed DOI PMC
Yahia S., Khalil I.A., El-Sherbiny I.M. Sandwich-Like Nanofibrous Scaffolds for Bone Tissue Regeneration. ACS Appl. Mater. Interfaces. 2019;11:28610–28620. doi: 10.1021/acsami.9b06359. PubMed DOI
Popov A.A., Tselikov G., Dumas N., Berard C., Metwally K., Jones N., Al-Kattan A., Larrat B., Braguer D., Mensah S., et al. Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications. Sci. Rep. 2019;9:1194. doi: 10.1038/s41598-018-37519-1. PubMed DOI PMC
Zelepukin I.V., Popov A.A., Shipunova V.O., Tikhonowski G.V., Mirkasymov A.B., Popova-Kuznetsova E.A., Klimentov S.M., Kabashin A.V., Deyev S.M. Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Mater. Sci. Eng. C. 2021;120:111717. doi: 10.1016/j.msec.2020.111717. PubMed DOI
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Agarwal S., Greiner A., Wendorff J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013;38:963–991. doi: 10.1016/j.progpolymsci.2013.02.001. DOI
Kim M., Hwang S., Yu J.-S. Novel ordered nanoporous graphitic C 3 N 4 as a support for Pt–Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007;17:1656–1659. doi: 10.1039/B702213A. DOI
Rounaghi S.A., Vanpoucke D.E.P., Eshghi H., Scudino S., Esmaeili E., Oswald S., Eckert J. Mechanochemical synthesis of nanostructured metal nitrides, carbonitrides and carbon nitride: A combined theoretical and experimental study. Phys. Chem. Chem. Phys. 2017;19:12414–12424. doi: 10.1039/C7CP00998D. PubMed DOI
Abdelrazek E.M., Hezma A.M., El-khodary A., Elzayat A.M. Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J. Basic Appl. Sci. 2016;3:10–15. doi: 10.1016/j.ejbas.2015.06.001. DOI
Tian J., Wong K.K.Y., Ho C.-M., Lok C.-N., Yu W.-Y., Che C.-M., Chiu J.-F., Tam P.K.H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem. 2007;2:129–136. doi: 10.1002/cmdc.200600171. PubMed DOI
Ali S., Morsy R., El-Zawawy N., Fareed M., Bedaiwy M. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): A novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomed. 2017;12:6059–6073. doi: 10.2147/IJN.S141201. PubMed DOI PMC
Grande F., Tucci P. Titanium Dioxide Nanoparticles: A Risk for Human Health? Mini Rev. Med. Chem. 2016;16:762–769. doi: 10.2174/1389557516666160321114341. PubMed DOI
Allegri M., Bianchi M.G., Chiu M., Varet J., Costa A.L., Ortelli S., Blosi M., Bussolati O., Poland C.A., Bergamaschi E. Shape-related toxicity of titanium dioxide nanofibres. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0151365. PubMed DOI PMC
Hamilton R.F., Buford M., Xiang C., Wu N., Holian A. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal. Toxicol. 2012;24:995–1008. doi: 10.3109/08958378.2012.745633. PubMed DOI PMC
Gotman I., Gutmanas E.Y., Hunter G. Comprehensive Biomaterials II. Elsevier; Oxford, UK: 2017. 1.8 Wear-Resistant Ceramic Films and Coatings; pp. 165–203.
Hyde G.K., McCullen S.D., Jeon S., Stewart S.M., Jeon H., Loboa E.G., Parsons G.N. Atomic layer deposition and biocompatibility of titanium nitride nano-coatings on cellulose fiber substrates. Biomed. Mater. 2009;4:025001. doi: 10.1088/1748-6041/4/2/025001. PubMed DOI
Paschoal A.L., Vanâncio E.C., de Canale L.C.F., da Silva O.L., Huerta-Vilca D., de Motheo A.J. Metallic Biomaterials TiN-Coated: Corrosion Analysis and Biocompatibility. Artif. Organs. 2003;27:461–464. doi: 10.1046/j.1525-1594.2003.07241.x. PubMed DOI
Baronzio G.F., Hager E.D. Hyperthermia in Cancer Treatment: A Primer. Springer US; Boston, MA, USA: 2006.
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications