Preliminary Study of Sars-Cov-2 Occurrence in Wastewater in the Czech Republic

. 2020 Jul 30 ; 17 (15) : . [epub] 20200730

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32751749

Grantová podpora
3600.52.33/2020 T. G. Masaryk Water Research Instite, public research institution - International
CZ.07.1.02 / 0.0 / 0.0 / 16_040 / 0000378 The City of Prague - International
MZE-RO0518 Ministry of Agriculture of the Czech Republic - International

The virus SARS-CoV-2, which has caused the recent COVID-19 pandemic, may be present in the stools of COVID-19 patients. Therefore, we aimed to detect SARS-CoV-2 in wastewater for surveillance of SARS-CoV-2 in the population. Samples of untreated wastewater were collected from 33 wastewater treatment plants (WWTPs) of different sizes within the Czech Republic. SARS-CoV-2 RNA was concentrated from wastewater and viral RNA was determined using real-time reverse transcription polymerase chain reaction (RT-qPCR). SARS-CoV-2 RNA was detected in 11.6% of samples and more than 27.3% of WWTPs; in some of them, SARS-CoV-2 was detected repeatedly. Our preliminary results indicate that an epidemiology approach that focuses on the determination of SARS-CoV-2 in wastewater could be suitable for SARS-CoV-2 surveillance in the population.

Zobrazit více v PubMed

Drexler J.F., Corman M.V., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 2014;101:45–56. doi: 10.1016/j.antiviral.2013.10.013. PubMed DOI PMC

Chan J.F.W., Lau S.K.P., To K.K.W., Cheng V.C.C., Woo P.C.Y., Yuen K.Y. Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus casuing SARS-like disease. Clin. Microbiol. Rev. 2015;28:465–522. doi: 10.1128/CMR.00102-14. PubMed DOI PMC

Chan P.K., Chan M.C. Tracing the SARS-coronavirus. J. Thorac. Dis. 2013;5:S118–S121. doi: 10.3978/j.issn.2072-1439.2013.06.19. PubMed DOI PMC

Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J., Wang H., Shen H., Qiu L., Li Z., et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol. 2004;203:622–630. doi: 10.1002/path.1560. PubMed DOI PMC

Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic, recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490–502. doi: 10.1016/j.tim.2016.03.003. PubMed DOI PMC

De Wit E., Van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. PubMed DOI PMC

Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9. PubMed DOI PMC

Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.-L., Chan M.C.W., Peiris M., Poon L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1:e10. doi: 10.1016/S2666-5247(20)30003-3. PubMed DOI PMC

Corman V.M., Albarrak A.M., Omrani A.S., Albarrak M.M., Farah M.E., Almasri M., Muth D., Sieberg A., Meyer B., Assiri A.M., et al. Viral shedding and antibody response in 37 patients with Middle East Respiratory Syndrome coronavirus infection. Clin. Infect. Dis. 2016;62:477–483. doi: 10.1093/cid/civ951. PubMed DOI PMC

Miri S.M., Roozbeh F., Omranirad A., Alavian S.M. Panic of Buying Toilet Papers: A Historical Memory or a horrible truth? Systematic review of gastrointestinal manifestations of COVID-19. Hepat. Mon. 2020;20:e102729. doi: 10.5812/hepatmon.102729. DOI

Zhang T., Cui X., Zhao X., Wang J., Zheng J., Zheng G., Guo W., Cai C., He S., Xu Y. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J. Med. Virol. 2020;92:909–914. doi: 10.1002/jmv.25795. PubMed DOI PMC

Lo I.L., Lio C.F., Cheong H.H., Lei C.I., Cheong T.H., Zhong X., Tian Y., Sin N.N. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int. J. Biol. Sci. 2020;16:1698–1707. doi: 10.7150/ijbs.45357. PubMed DOI PMC

Tian Y., Rong L., Nian W., He Y. Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 2020;51:843–851. doi: 10.1111/apt.15731. PubMed DOI PMC

Hindson J. COVID-19, Faecal-oral transmission? Nat. Rev. Gastroenterol. Hepatol. 2020;17:259. doi: 10.1038/s41575-020-0295-7. PubMed DOI PMC

Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: Is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 2020;5:335–337. doi: 10.1016/S2468-1253(20)30048-0. PubMed DOI PMC

Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158:1831–1833. doi: 10.1053/j.gastro.2020.02.055. PubMed DOI PMC

Heller L., Mota C.R., Greco D.B. COVID-19 faecal-oral transmission: Are we asking the right questions? Sci. Total Environ. 2020;729:138919–138922. doi: 10.1016/j.scitotenv.2020.138919. PubMed DOI PMC

Wang X., Zhou Y., Jiang N., Zhou Q., Ma W.L. Persistence of intestinal SARS-CoV-2 infection in patients with COVID-19 leads to re-admission after pneumonia resolved. Int. J. Infect. Dis. 2020;95:433–435. doi: 10.1016/j.ijid.2020.04.063. PubMed DOI PMC

Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020;26:502–505. doi: 10.1038/s41591-020-0817-4. PubMed DOI PMC

Cao Q., Chen Y.C., Chen C.L., Chiu C.H. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J. Formos. Med. Assoc. 2020;119:670–673. doi: 10.1016/j.jfma.2020.02.009. PubMed DOI PMC

Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed DOI PMC

Sun J., Zhu A., Li H., Zheng K., Zhuang Z., Chen Z., Shi Y., Zhang Z., Chen S., Liu X., et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg. Microb. Infect. 2020;9:991–993. doi: 10.1080/22221751.2020.1760144. PubMed DOI PMC

Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020;382:929–936. doi: 10.1056/NEJMoa2001191. PubMed DOI PMC

Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. Presence of SARS-Cronavirus-2 in sewage. Environ. Sci. Technol. Lett. 2020 doi: 10.1021/acs.estlett.0c00357. PubMed DOI

Quilliam R.S., Weidmann M., Moresco V., Purshouse H., O’Hara Z., Oliver D.M. COVID-19, The environmental implications of shedding SARS-CoV-2 in human faeces. Environ. Int. 2020;140:105790. doi: 10.1016/j.envint.2020.105790. PubMed DOI PMC

Kitajima M., Ahmed W., Bibby K., Carducci A., Gerba C.P., Hamilton K.A., Haramoto E., Rose J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020;739:139076. doi: 10.1016/j.scitotenv.2020.139076. PubMed DOI PMC

Amirian E.S. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int. J. Infect. Dis. 2020;95:363–370. doi: 10.1016/j.ijid.2020.04.057. PubMed DOI PMC

Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O’Brien J.W., Choi P.M., Kitajima M., Simpson S.L., Li J., et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728:138764. doi: 10.1016/j.scitotenv.2020.138764. PubMed DOI PMC

Hata A., Honda R. Potential sensitivity of wastewater monitoring for SARS-CoV-2: Comparison with Norovirus cases. Environ. Sci. Technol. 2020;54:6451–6452. doi: 10.1021/acs.est.0c02271. PubMed DOI

La Rosa G., Iaconelli M., Mancini P., Bonanno Ferraro G., Veneri C., Bonadonna L., Lucentini L., Suffredini E. First detection of SARS-COV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020;736:139652. doi: 10.1016/j.scitotenv.2020.139652. PubMed DOI PMC

Lodder W., Husman A.M.D. SARS-CoV-2 in wastewater: Potential health risk, but also source data. Lancet Gastroenterol. 2020;5:533–534. doi: 10.1016/S2468-1253(20)30087-X. PubMed DOI PMC

Randazzo W., Truchado P., Cuevas-Ferrando E., Simón P., Allende A., Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181:115942. doi: 10.1016/j.watres.2020.115942. PubMed DOI PMC

Sodre F.F., Brandao C.C.S., Vizzotto C.S., Maldaner A.O. Wastewater-based epidemiology as a strategy for community monitoring, mapping of hotspots and early warning systems of Covid-19. Quim. Nova. 2020;43:515–519. doi: 10.21577/0100-4042.20170545. DOI

Mlejnková H., Očenášková V., Sovová K., Vašíčková P., Juranová E. Koronavirus SARS-CoV-2 v povrchových a odpadních vodách (Coronavirus SARS-CoV-2 in surface and wastewater) VTEI. 2020;2:28–32. doi: 10.46555/VTEI.2020.04.005. DOI

La Rosa G., Mancini P., Bonanno Ferraro G., Veneri C., Iaconelli M., Bonadonna L., Lucentini L., Suffredini E. SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. medRxiv. 2020 doi: 10.1101/2020.06.25.20140061. PubMed DOI PMC

Očenášková V. Komunální odpadní voda jako diagnostické médium (Municipal wastewater as a diagnostic medium) VTEI. 2018;60:28–30.

Gracia-Lor E., Castiglioni S., Bade R., Been F., Castrignanò E., Covaci A., González-Mariño I., Hapeshi E., Kasprzyk-Hordern B., Kinyua J., et al. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. Environ. Int. 2017;99:131–150. doi: 10.1016/j.envint.2016.12.016. PubMed DOI

Cacace D., Fatta-Kassinos D., Manaia C.M., Cytryn E., Kreuzinger N., Rizzo L., Karaolia P., Schwartz T., Alexander J., Merlin C., et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res. 2019;162:320–330. doi: 10.1016/j.watres.2019.06.039. PubMed DOI

Daughton C.G. Wasterwater surveillance for population—Wide Covid-19: The present and future. Sci. Total Environ. 2020;736:139631. doi: 10.1016/j.scitotenv.2020.139631. PubMed DOI PMC

Mao K., Zhang K., Du W., Ali W., Feng X., Zhang H. The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Curr. Opin. Environ. Sci. Health. 2020;17:1–7. doi: 10.1016/j.coesh.2020.04.006. PubMed DOI PMC

Orive G., Lertxundi U., Barcelo D. Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci. Total Environ. 2020;732:139298. doi: 10.1016/j.scitotenv.2020.139298. PubMed DOI PMC

Barcelo D. An environmental and health perspective for COVID-19 outbreak: Meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. J. Environ. Chem. Eng. 2020;8:104006. doi: 10.1016/j.jece.2020.104006. PubMed DOI PMC

Hart O.E., Halden R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020;730:138875. doi: 10.1016/j.scitotenv.2020.138875. PubMed DOI PMC

Sims N., Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020;139:105689. doi: 10.1016/j.envint.2020.105689. PubMed DOI PMC

Calgua B., Rodriguez-Manzano J., Hundesa A., Suñen E., Calvo M., Bofill-Mas S., Girones R. New methods for the concentration of viruses from urban sewage using quantitative PCR. J. Virol. Methods. 2013;187:215–221. doi: 10.1016/j.jviromet.2012.10.012. PubMed DOI

ISO 15216-2: 2019 Microbiology of the Food Chain—Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR—Part 2: Method for Qualitative Detection. Organization for Standardization; Geneva, Switzerland: 2019.

Vemulapalli R., Gulani J., Santrich C. A real-time TaqMan RT-PCR assay with an internal amplification control for rapid detection of transmissible gastroenteritis virus in swine fecal samples. J. Virol. Methods. 2009;162:231–235. doi: 10.1016/j.jviromet.2009.08.016. PubMed DOI PMC

Vasickova P., Kralik P., Slana I., Pavlik I. Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J. Virol. Methods. 2012;180:38–42. doi: 10.1016/j.jviromet.2011.12.007. PubMed DOI

Mikel P., Vasickova P., Tesarik R., Malenovska H., Kulich P., Vesely T., Kralik P. Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Front. Microbiol. 2016;7:1911. doi: 10.3389/fmicb.2016.01911. PubMed DOI PMC

Ye Y., Ellenberg R.M., Graham K.E., Wigginton K.R. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environ. Sci. Technol. 2016;50:5077–5085. doi: 10.1021/acs.est.6b00876. PubMed DOI

Casanova L., Rutala W.A., Weber D.J., Sobsey M.D. Survival of surrogate coronaviruses in water. Water Res. 2009;43:1893–1898. doi: 10.1016/j.watres.2009.02.002. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...