Preliminary Study of Sars-Cov-2 Occurrence in Wastewater in the Czech Republic
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
3600.52.33/2020
T. G. Masaryk Water Research Instite, public research institution - International
CZ.07.1.02 / 0.0 / 0.0 / 16_040 / 0000378
The City of Prague - International
MZE-RO0518
Ministry of Agriculture of the Czech Republic - International
PubMed
32751749
PubMed Central
PMC7432771
DOI
10.3390/ijerph17155508
PII: ijerph17155508
Knihovny.cz E-zdroje
- Klíčová slova
- RT-qPCR, SARS-CoV-2, coronavirus, early warning system, epidemic, virus, wastewater, wastewater-based epidemiology,
- MeSH
- Betacoronavirus izolace a purifikace MeSH
- COVID-19 MeSH
- feces virologie MeSH
- koronavirové infekce epidemiologie virologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- odpadní voda virologie MeSH
- pandemie MeSH
- RNA virová MeSH
- SARS-CoV-2 MeSH
- virová pneumonie epidemiologie virologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- odpadní voda MeSH
- RNA virová MeSH
The virus SARS-CoV-2, which has caused the recent COVID-19 pandemic, may be present in the stools of COVID-19 patients. Therefore, we aimed to detect SARS-CoV-2 in wastewater for surveillance of SARS-CoV-2 in the population. Samples of untreated wastewater were collected from 33 wastewater treatment plants (WWTPs) of different sizes within the Czech Republic. SARS-CoV-2 RNA was concentrated from wastewater and viral RNA was determined using real-time reverse transcription polymerase chain reaction (RT-qPCR). SARS-CoV-2 RNA was detected in 11.6% of samples and more than 27.3% of WWTPs; in some of them, SARS-CoV-2 was detected repeatedly. Our preliminary results indicate that an epidemiology approach that focuses on the determination of SARS-CoV-2 in wastewater could be suitable for SARS-CoV-2 surveillance in the population.
Zobrazit více v PubMed
Drexler J.F., Corman M.V., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 2014;101:45–56. doi: 10.1016/j.antiviral.2013.10.013. PubMed DOI PMC
Chan J.F.W., Lau S.K.P., To K.K.W., Cheng V.C.C., Woo P.C.Y., Yuen K.Y. Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus casuing SARS-like disease. Clin. Microbiol. Rev. 2015;28:465–522. doi: 10.1128/CMR.00102-14. PubMed DOI PMC
Chan P.K., Chan M.C. Tracing the SARS-coronavirus. J. Thorac. Dis. 2013;5:S118–S121. doi: 10.3978/j.issn.2072-1439.2013.06.19. PubMed DOI PMC
Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J., Wang H., Shen H., Qiu L., Li Z., et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol. 2004;203:622–630. doi: 10.1002/path.1560. PubMed DOI PMC
Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic, recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490–502. doi: 10.1016/j.tim.2016.03.003. PubMed DOI PMC
De Wit E., Van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. PubMed DOI PMC
Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9. PubMed DOI PMC
Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.-L., Chan M.C.W., Peiris M., Poon L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1:e10. doi: 10.1016/S2666-5247(20)30003-3. PubMed DOI PMC
Corman V.M., Albarrak A.M., Omrani A.S., Albarrak M.M., Farah M.E., Almasri M., Muth D., Sieberg A., Meyer B., Assiri A.M., et al. Viral shedding and antibody response in 37 patients with Middle East Respiratory Syndrome coronavirus infection. Clin. Infect. Dis. 2016;62:477–483. doi: 10.1093/cid/civ951. PubMed DOI PMC
Miri S.M., Roozbeh F., Omranirad A., Alavian S.M. Panic of Buying Toilet Papers: A Historical Memory or a horrible truth? Systematic review of gastrointestinal manifestations of COVID-19. Hepat. Mon. 2020;20:e102729. doi: 10.5812/hepatmon.102729. DOI
Zhang T., Cui X., Zhao X., Wang J., Zheng J., Zheng G., Guo W., Cai C., He S., Xu Y. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J. Med. Virol. 2020;92:909–914. doi: 10.1002/jmv.25795. PubMed DOI PMC
Lo I.L., Lio C.F., Cheong H.H., Lei C.I., Cheong T.H., Zhong X., Tian Y., Sin N.N. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int. J. Biol. Sci. 2020;16:1698–1707. doi: 10.7150/ijbs.45357. PubMed DOI PMC
Tian Y., Rong L., Nian W., He Y. Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 2020;51:843–851. doi: 10.1111/apt.15731. PubMed DOI PMC
Hindson J. COVID-19, Faecal-oral transmission? Nat. Rev. Gastroenterol. Hepatol. 2020;17:259. doi: 10.1038/s41575-020-0295-7. PubMed DOI PMC
Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: Is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 2020;5:335–337. doi: 10.1016/S2468-1253(20)30048-0. PubMed DOI PMC
Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158:1831–1833. doi: 10.1053/j.gastro.2020.02.055. PubMed DOI PMC
Heller L., Mota C.R., Greco D.B. COVID-19 faecal-oral transmission: Are we asking the right questions? Sci. Total Environ. 2020;729:138919–138922. doi: 10.1016/j.scitotenv.2020.138919. PubMed DOI PMC
Wang X., Zhou Y., Jiang N., Zhou Q., Ma W.L. Persistence of intestinal SARS-CoV-2 infection in patients with COVID-19 leads to re-admission after pneumonia resolved. Int. J. Infect. Dis. 2020;95:433–435. doi: 10.1016/j.ijid.2020.04.063. PubMed DOI PMC
Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020;26:502–505. doi: 10.1038/s41591-020-0817-4. PubMed DOI PMC
Cao Q., Chen Y.C., Chen C.L., Chiu C.H. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J. Formos. Med. Assoc. 2020;119:670–673. doi: 10.1016/j.jfma.2020.02.009. PubMed DOI PMC
Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed DOI PMC
Sun J., Zhu A., Li H., Zheng K., Zhuang Z., Chen Z., Shi Y., Zhang Z., Chen S., Liu X., et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg. Microb. Infect. 2020;9:991–993. doi: 10.1080/22221751.2020.1760144. PubMed DOI PMC
Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020;382:929–936. doi: 10.1056/NEJMoa2001191. PubMed DOI PMC
Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. Presence of SARS-Cronavirus-2 in sewage. Environ. Sci. Technol. Lett. 2020 doi: 10.1021/acs.estlett.0c00357. PubMed DOI
Quilliam R.S., Weidmann M., Moresco V., Purshouse H., O’Hara Z., Oliver D.M. COVID-19, The environmental implications of shedding SARS-CoV-2 in human faeces. Environ. Int. 2020;140:105790. doi: 10.1016/j.envint.2020.105790. PubMed DOI PMC
Kitajima M., Ahmed W., Bibby K., Carducci A., Gerba C.P., Hamilton K.A., Haramoto E., Rose J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020;739:139076. doi: 10.1016/j.scitotenv.2020.139076. PubMed DOI PMC
Amirian E.S. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int. J. Infect. Dis. 2020;95:363–370. doi: 10.1016/j.ijid.2020.04.057. PubMed DOI PMC
Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O’Brien J.W., Choi P.M., Kitajima M., Simpson S.L., Li J., et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728:138764. doi: 10.1016/j.scitotenv.2020.138764. PubMed DOI PMC
Hata A., Honda R. Potential sensitivity of wastewater monitoring for SARS-CoV-2: Comparison with Norovirus cases. Environ. Sci. Technol. 2020;54:6451–6452. doi: 10.1021/acs.est.0c02271. PubMed DOI
La Rosa G., Iaconelli M., Mancini P., Bonanno Ferraro G., Veneri C., Bonadonna L., Lucentini L., Suffredini E. First detection of SARS-COV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020;736:139652. doi: 10.1016/j.scitotenv.2020.139652. PubMed DOI PMC
Lodder W., Husman A.M.D. SARS-CoV-2 in wastewater: Potential health risk, but also source data. Lancet Gastroenterol. 2020;5:533–534. doi: 10.1016/S2468-1253(20)30087-X. PubMed DOI PMC
Randazzo W., Truchado P., Cuevas-Ferrando E., Simón P., Allende A., Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181:115942. doi: 10.1016/j.watres.2020.115942. PubMed DOI PMC
Sodre F.F., Brandao C.C.S., Vizzotto C.S., Maldaner A.O. Wastewater-based epidemiology as a strategy for community monitoring, mapping of hotspots and early warning systems of Covid-19. Quim. Nova. 2020;43:515–519. doi: 10.21577/0100-4042.20170545. DOI
Mlejnková H., Očenášková V., Sovová K., Vašíčková P., Juranová E. Koronavirus SARS-CoV-2 v povrchových a odpadních vodách (Coronavirus SARS-CoV-2 in surface and wastewater) VTEI. 2020;2:28–32. doi: 10.46555/VTEI.2020.04.005. DOI
La Rosa G., Mancini P., Bonanno Ferraro G., Veneri C., Iaconelli M., Bonadonna L., Lucentini L., Suffredini E. SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. medRxiv. 2020 doi: 10.1101/2020.06.25.20140061. PubMed DOI PMC
Očenášková V. Komunální odpadní voda jako diagnostické médium (Municipal wastewater as a diagnostic medium) VTEI. 2018;60:28–30.
Gracia-Lor E., Castiglioni S., Bade R., Been F., Castrignanò E., Covaci A., González-Mariño I., Hapeshi E., Kasprzyk-Hordern B., Kinyua J., et al. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. Environ. Int. 2017;99:131–150. doi: 10.1016/j.envint.2016.12.016. PubMed DOI
Cacace D., Fatta-Kassinos D., Manaia C.M., Cytryn E., Kreuzinger N., Rizzo L., Karaolia P., Schwartz T., Alexander J., Merlin C., et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res. 2019;162:320–330. doi: 10.1016/j.watres.2019.06.039. PubMed DOI
Daughton C.G. Wasterwater surveillance for population—Wide Covid-19: The present and future. Sci. Total Environ. 2020;736:139631. doi: 10.1016/j.scitotenv.2020.139631. PubMed DOI PMC
Mao K., Zhang K., Du W., Ali W., Feng X., Zhang H. The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Curr. Opin. Environ. Sci. Health. 2020;17:1–7. doi: 10.1016/j.coesh.2020.04.006. PubMed DOI PMC
Orive G., Lertxundi U., Barcelo D. Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci. Total Environ. 2020;732:139298. doi: 10.1016/j.scitotenv.2020.139298. PubMed DOI PMC
Barcelo D. An environmental and health perspective for COVID-19 outbreak: Meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. J. Environ. Chem. Eng. 2020;8:104006. doi: 10.1016/j.jece.2020.104006. PubMed DOI PMC
Hart O.E., Halden R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020;730:138875. doi: 10.1016/j.scitotenv.2020.138875. PubMed DOI PMC
Sims N., Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020;139:105689. doi: 10.1016/j.envint.2020.105689. PubMed DOI PMC
Calgua B., Rodriguez-Manzano J., Hundesa A., Suñen E., Calvo M., Bofill-Mas S., Girones R. New methods for the concentration of viruses from urban sewage using quantitative PCR. J. Virol. Methods. 2013;187:215–221. doi: 10.1016/j.jviromet.2012.10.012. PubMed DOI
ISO 15216-2: 2019 Microbiology of the Food Chain—Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR—Part 2: Method for Qualitative Detection. Organization for Standardization; Geneva, Switzerland: 2019.
Vemulapalli R., Gulani J., Santrich C. A real-time TaqMan RT-PCR assay with an internal amplification control for rapid detection of transmissible gastroenteritis virus in swine fecal samples. J. Virol. Methods. 2009;162:231–235. doi: 10.1016/j.jviromet.2009.08.016. PubMed DOI PMC
Vasickova P., Kralik P., Slana I., Pavlik I. Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J. Virol. Methods. 2012;180:38–42. doi: 10.1016/j.jviromet.2011.12.007. PubMed DOI
Mikel P., Vasickova P., Tesarik R., Malenovska H., Kulich P., Vesely T., Kralik P. Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Front. Microbiol. 2016;7:1911. doi: 10.3389/fmicb.2016.01911. PubMed DOI PMC
Ye Y., Ellenberg R.M., Graham K.E., Wigginton K.R. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environ. Sci. Technol. 2016;50:5077–5085. doi: 10.1021/acs.est.6b00876. PubMed DOI
Casanova L., Rutala W.A., Weber D.J., Sobsey M.D. Survival of surrogate coronaviruses in water. Water Res. 2009;43:1893–1898. doi: 10.1016/j.watres.2009.02.002. PubMed DOI PMC