Wastewater-Based Epidemiology as an Early Warning System for the Spreading of SARS-CoV-2 and Its Mutations in the Population

. 2021 May 25 ; 18 (11) : . [epub] 20210525

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070320

Grantová podpora
17-0119 Agentúra na Podporu Výskumu a Vývoja
17-0183 Agentúra na Podporu Výskumu a Vývoja
PP-COVID-20-0019 Agentúra na Podporu Výskumu a Vývoja
APVV-19-0250 Agentúra na Podporu Výskumu a Vývoja
831644 Horizon 2020 Framework Programme
313011ASS8 European Regional Development Fund
Microplastics in waters of Slovakia - monitoring and possibilities of use innovative processes for their removal Slovenská technická univerzita v Bratislave
Hospitals and music festivals as point sources of micropollutants in surface water and effective options for their removal Slovenská technická univerzita v Bratislave
Monitoring and removal of SARS-CoV-2 RNA fragments in wastewater using ferrates Slovenská technická univerzita v Bratislave
Households as a potential source of microfibers for the environment Slovenská technická univerzita v Bratislave
CZ.02.1.01/0.0/0.0/16_019/0000845 European Regional Development Fund

New methodologies based on the principle of "sewage epidemiology" have been successfully applied before in the detection of illegal drugs. The study describes the idea of early detection of a virus, e.g., SARS-CoV-2, in wastewater in order to focus on the area of virus occurrence and supplement the results obtained from clinical examination. By monitoring temporal variation in viral loads in wastewater in combination with other analysis, a virus outbreak can be detected and its spread can be suppressed early. The use of biosensors for virus detection also seems to be an interesting application. Biosensors are highly sensitive, selective, and portable and offer a way for fast analysis. This manuscript provides an overview of the current situation in the area of wastewater analysis, including genetic sequencing regarding viral detection and the technological solution of an early warning system for wastewater monitoring based on biosensors.

Zobrazit více v PubMed

Daughton C.D., Ternes T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999;107:907–938. doi: 10.1289/ehp.99107s6907. PubMed DOI PMC

Zuccato E., Chiabrando C., Castiglioni S., Calamari D., Bagnati R., Schiarea S., Fanelli R. Cocaine in surface waters: A new evidence-based tool to monitor community drug abuse. Environ. Health. 2005;4:14–20. doi: 10.1186/1476-069X-4-14. PubMed DOI PMC

Bijlsma L., Celma A., Lopez F.J., Hernandez F. Monitoring new psychoactive substances use through wastewater analysis: Current situation, challenges and limitations. Curr. Opin. Environ. Sci. Health. 2019;9:1–12. doi: 10.1016/j.coesh.2019.03.002. DOI

Castrignanò E., Yang Z., Feil E.J., Bade R., Castiglioni S., Causanilles A., Gracia-Lor E., Hernandez F., Plosz B.G., Ramin P., et al. Enantiomeric profiling of quinolones and quinolones resistance gene qnrS in European wastewaters. Water Res. 2020;175:115653. doi: 10.1016/j.watres.2020.115653. PubMed DOI

Gracia-Lor E., Zuccato E., Hernandez F., Castiglioni S. Wastewater-based epidemiology for tracking human exposure to mycotoxins. J. Hazard. Mater. 2020;382:121108. doi: 10.1016/j.jhazmat.2019.121108. PubMed DOI

Rousis I.N., Gracia-Lor E., Reid M.J., Baz-Lomba J.A., Ryu Y., Zuccato E., Thomas K.V., Castiglioni S. Assessment of human exposure to selected pesticides in Norway by wastewater analysis. Sci. Total Environ. 2020;723:138132. doi: 10.1016/j.scitotenv.2020.138132. PubMed DOI

Sims N., Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020;139:105689. doi: 10.1016/j.envint.2020.105689. PubMed DOI PMC

Castrignanò E., Mardal M., Rydevik A., Miserez B., Ramsey J., Shine T., Pantos D., Meyer M.R., Kasprzyk-Hordern B. A newapproach towards biomarker selection in estimation of human exposure to chiral chemicals: A case study of mephedrone. Sci. Rep. 2017;7:13009. doi: 10.1038/s41598-017-12581-3. PubMed DOI PMC

Xagoraraki I., O’Brien E. Wastewater-based epidemiology for early detection of viral outbreaks. In: O’Bannon D., editor. Women in Water Quality, Women in Engineering and Science. Springer Nature; Cham, Switzerland: 2020. pp. 75–97. DOI

WHO. [(accessed on 7 April 2020)];2020 Available online: https://web.archive.org/web/20141214011751/

WHO. [(accessed on 7 April 2020)];2020 Available online: https://www.who.int/en/news-room/fact-sheets/detail/rabies.

WHO. [(accessed on 7 April 2020)];2020 Available online: https://www.who.int/csr/sars/country/table2004_04_21/en/

Ozili P.K., Arun T. Spillover of COVID-19: Impact on the global economy. SSRN Electron. J. 2020:3562570. doi: 10.2139/ssrn.3562570. DOI

Van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020;382:1564–1567. doi: 10.1056/NEJMc2004973. PubMed DOI PMC

Tian Y., Rong L., Nian W., He Y. Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 2020;51:843–851. doi: 10.1111/apt.15731. PubMed DOI PMC

Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J. Am. Med. Assoc. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC

WHO Water, Sanitation, Hygiene and Waste Management for COVID-19. [(accessed on 23 March 2020)];2020 Available online: https://www.who.int/publications-detail/water-sanitation-hygiene-and-waste-management-for-covid-19.

Xiao E., Tang M., Zheng X., Liu Y., Li C., He J., Hong Z., Huang S., Zhang Z., Lin X., et al. Evidence for gastrointestinal infection of SARS-CoV. Gastroenterology. 2020;158:1831–1833. doi: 10.1053/j.gastro.2020.02.055. PubMed DOI PMC

Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: Is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 2020;5:335–337. doi: 10.1016/S2468-1253(20)30048-0. PubMed DOI PMC

Langone M., Petta L., Cellamare C.M., Ferraris M., Guzzinati R., Mattioli D., Sabia G. SARS-CoV-2 in water services: Presence and impacts. Environ. Pollut. 2020;268:115806. doi: 10.1016/j.envpol.2020.115806. PubMed DOI PMC

Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020;7:511–516. doi: 10.1021/acs.estlett.0c00357. PubMed DOI

Orive G., Lertxundi U., Barcelo D. Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci. Total Environ. 2020;732:139298. doi: 10.1016/j.scitotenv.2020.139298. PubMed DOI PMC

Hokajärvi A.M., Rytkönen A., Tiwari A., Kauppinen A., Oikarinen S., Lehto K.M., Kankaanpää A., Gunnar T., Al-Hello H., Blomqvist S., et al. The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland. Sci. Total. Environ. 2021;770:145274. doi: 10.1016/j.scitotenv.2021.145274. PubMed DOI PMC

Pan Y., Zhang D., Yang P., Poon L.L.M., Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020;20:411–412. doi: 10.1016/S1473-3099(20)30113-4. PubMed DOI PMC

Woelfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Mueller M.A., Niemeyer D., Vollmar P., Rothe C., Hoelscher M., et al. Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster. medRxiv. 2020 doi: 10.1101/2020.03.05.20030502. DOI

Chen C., Gao G., Xu Y., Pu L., Wang Q., Wang L., Wang W., Song Y., Chen M., Wang L., et al. SARS-CoV-2–positive sputum and feces after conversion of pharyngeal samples in patients with COVID-19. Ann. Intern. Med. 2020 doi: 10.7326/M20-0991. PubMed DOI PMC

Lescure F.X., Bouadma L., Nguyen D., Parisey M., Wicky P.H., Behillil S., Gaymard A., Bouscambert-Duchamp M., Donati F., Le Hingrat Q., et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect. Dis. 2020;20:697–706. doi: 10.1016/S1473-3099(20)30200-0. PubMed DOI PMC

Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. J. Am. Med. Assoc. 2020;323:1843–1844. doi: 10.1001/jama.2020.3786. PubMed DOI PMC

Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020;5:434–435. doi: 10.1016/S2468-1253(20)30083-2. PubMed DOI PMC

Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020;26:502–505. doi: 10.1038/s41591-020-0817-4. PubMed DOI PMC

Randazzo W., Truchado P., Cuevas-Ferrando E., Simon P., Allende A., Sanchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181:115942. doi: 10.1016/j.watres.2020.115942. PubMed DOI PMC

Haramoto E., Malla B., Thakali O., Kitajima M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020;737:140405. doi: 10.1016/j.scitotenv.2020.140405. PubMed DOI PMC

Randazzo W., Cuevas-Ferrando E., Sanjuan R., Domingo-Calap P., Sanchez G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int. J. Hyg. Environ. Health. 2020;230:113621. doi: 10.1016/j.ijheh.2020.113621. PubMed DOI PMC

Fongaro G., Stoco P.H., Souza D.S.M., Grisard E.C., Magri M.E., Rogovski P., Schorner M.A., Barazzetti F.H., Christoff A.P., de Oliveira L.F.V., et al. SARS-CoV-2 in human sewage in Santa Catalina, Brazil, November 2019. Sci. Total Environ. 2021;778:146198. doi: 10.1016/j.scitotenv.2021.146198. PubMed DOI PMC

La Rosa G., Mancini P., Ferraro G.B., Veneri C., Iaconelli M., Bonadonna L., Lucentini L., Suffredini E. SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. Sci. Total Environ. 2021;750:141711. doi: 10.1016/j.scitotenv.2020.141711. PubMed DOI PMC

Li R., Pei S., Chen B., Song Y., Zhang T., Yang W., Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) Science. 2020;368:489–493. doi: 10.1126/science.abb3221. PubMed DOI PMC

Kitajima M., Ahmed W., Bibby K., Carducci A., Gerba C.P., Hamilton K.A., Harmoto E., Rose J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020;739:139076. doi: 10.1016/j.scitotenv.2020.139076. PubMed DOI PMC

La Rosa G., Bonadonna L., Lucentini L., Kenmore S., Suffredini E. Coronavirus in water environments: Occurrence, persistence and concentration methods—A scoping review. Water Res. 2020;179:115899. doi: 10.1016/j.watres.2020.115899. PubMed DOI PMC

Bivins A., Greaves J., Fischer R., Yinda K.C., Ahmed W., Kitajima M., Munster V.J., Bibby K. Persistence of SARS-CoV-2 in Water and Wastewater. Environ. Sci. Technol. Lett. 2020;7:937–942. doi: 10.1021/acs.estlett.0c00730. PubMed DOI PMC

Jones D.L., Baluja M.Q., Graham D.W., Corbishley A., McDonald J.E., Malham S.K., Hillary L.S., Connor T.R., Gaze W.H., Moura I.B., et al. Fecal Shedding of SARS-CoV-2 and its Potential Role in Person-To-Person Transmission and the Environment- Based Spread of COVID-19. Sci. Total Environ. 2020;749:141364. doi: 10.1016/j.scitotenv.2020.141364. PubMed DOI PMC

Westhouse S., Weber F.A., Schiwy S., Linnemann V., Brinkmann M., Widera M., Greve C., Janke A., Hollert H., Wintgens T., et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany—Suitability for COVID-19 surveillance and potential transmission risks. Sci. Total Environ. 2021;751:141750. doi: 10.1016/j.scitotenv.2020.141750. PubMed DOI PMC

Hart O.E., Halden R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020;730:138875. doi: 10.1016/j.scitotenv.2020.138875. PubMed DOI PMC

Katayama H., Haramoto E., Oguma K., Yamashita H., Tajima A., Nakajima H., Ohgaki S. One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plants in Japan. Water Res. 2008;42:1441–1448. doi: 10.1016/j.watres.2007.10.029. PubMed DOI

Skraber S., Ogorzaly L., Helmi K., Maul A., Hoffmann L., Cauchie H.M., Gantzer C. Occurrence and persistence of enteroviruses, noroviruses and F-specific RNA phages in natural wastewater biofilms. Water Res. 2009;43:4780–4789. doi: 10.1016/j.watres.2009.05.020. PubMed DOI

Bashir M.F., Ma B., Bilal, Komal B., Bashir M.A., Tan D., Bashir M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020;728:138835. doi: 10.1016/j.scitotenv.2020.138835. PubMed DOI PMC

Gupta S., Parker J., Smits S., Underwood J., Dolwani S. Persistent viral shedding of SARS-CoV-2 in faeces—A rapid review. Colorectal Dis. 2020;22:611–622. doi: 10.1111/codi.15138. PubMed DOI PMC

Núñez-Delgado A. What do we know about the SARS-CoV-2 coronavirus in the environment? Sci. Total Environ. 2020;727:138647. doi: 10.1016/j.scitotenv.2020.138647. PubMed DOI PMC

Wu F.Q., Xiao A., Zhang J.B., Gu X.Q., Lee W.L., Kauffman K., Hanage W.P., Matus M., Ghaeli N., Endo N., et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. mSystems. 2020;5:e00614-20. doi: 10.1128/mSystems.00614-20. PubMed DOI PMC

Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O’Brien J.W., Choi P.M., Kitajima M., Simpson S.L., Li J., et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728:138764. doi: 10.1016/j.scitotenv.2020.138764. PubMed DOI PMC

Wurtzer S., Marechal V., Mouchel J.M., Moulin L. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. 2020 doi: 10.1101/2020.04.12.20062679. DOI

Kocamemi B.A., Kurt H., Hacioglu S., Yarali C., Saatci A.M., Pakdemirli B. First Data-Set on SARS-CoV-2 Detection for Istanbul Wastewaters in Turkey. medRxiv. 2020 doi: 10.1101/2020.05.03.20089417. DOI

Rimoldi S.G., Stefani F., Gigantiello A., Polesello S., Comandatore F., Mileto D., Maresca M., Longobardi C., Mancon A., Romeri F., et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020;744:140911. doi: 10.1016/j.scitotenv.2020.140911. PubMed DOI PMC

Iglesias N.G., Gebhard L.G., Carballeda J.M., Aiello I., Recalde E., Terny G., Ambrosolio S., L’Arco G., Jonatan K., Brardinelli J.I. SARS-CoV-2 surveillance in untreated wastewater: First detection in a low-resource community in Buenos Aires, Argentina. medRxiv. 2020 doi: 10.1101/2020.10.21.20215434. PubMed DOI PMC

Sherchan S.P., Shahin S., Ward L.M., Tandukar S., Aw T.G., Schmitz B., Ahmed W., Kitajima M. First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Sci. Total Environ. 2020;743:140621. doi: 10.1016/j.scitotenv.2020.140621. PubMed DOI PMC

Kocamemi B.A., Kurt H., Sait A., Sarac F., Saatci A.M., Pakdemirli B. SARS-CoV-2 Detection in Istanbul Wastewater Treatment Plant Sludges. medRxiv. 2020 doi: 10.1101/2020.05.12.20099358. DOI

Miyani B., Fonoll X., Norton J., Mehrotra A., Xagoraraki I. SARS-CoV-2 in Detroit Wastewater. J. Environ. Eng. 2020;146:06020004. doi: 10.1061/(ASCE)EE.1943-7870.0001830. DOI

Mlejnková H., Sovova K., Vasickova P., Ocenaskova V., Jasikova L., Juranova E. Preliminary Study of Sars-Cov-2 Occurrence in Wastewater in the Czech Republic. Int. J. Environ. Res. Public Health. 2020;17:5508. doi: 10.3390/ijerph17155508. PubMed DOI PMC

Agrawal S., Orschler L., Lackner S. Long-term monitoring of SARS-CoV-2 in wastewater of the Frankfurt metropolitan area in Southern Germany. Sci. Rep. 2021;11:5372. doi: 10.1038/s41598-021-84914-2. PubMed DOI PMC

Been F., Rossi L., Ort C., Rudaz S., Delemont O., Esseiva P. Population normalization with ammonium in wastewater-based epidemiology: Application to illicit drug monitoring. Environ. Sci. Technol. 2014;48:8162–8169. doi: 10.1021/es5008388. PubMed DOI

Chen C., Kostakis C., Gerber J.P., Tscharke B.J., Irvine R.J., White J.M. Towards finding apopulation biomarker for wastewater epidemiology studies. Sci. Total Environ. 2014;487:621–628. doi: 10.1016/j.scitotenv.2013.11.075. PubMed DOI

Choi M.P., Tscharke B.J., Donner E., O’Brien J.W., Grant S.C., Kaserzon S.L., Mackie R., O’Malley E., Crosbie N.D., Thomas K.V., et al. Wastewater-based epidemiology biomarkers: Past, present and future. Trends Anal. Chem. 2018;105:453–469. doi: 10.1016/j.trac.2018.06.004. DOI

Lomba B.A.J., Di Ruscio F., Amador A., Reid M., Thomas K.V. Assessing alternative population size proxies in a wastewater catchment area using mobile device data. Environ. Sci. Technol. 2019;53:1994–2001. doi: 10.1021/acs.est.8b05389. PubMed DOI

Larson R.C., Berman O., Nourinejad M. Sampling manholes to home in on SARS-CoV-2 infections. PLoS ONE. 2020;15:e0240007. doi: 10.1371/journal.pone.0240007. PubMed DOI PMC

Daughton C. The international imperative to rapidly and inexpensively monitor community-wide Covid-19 infection status and trends. Sci. Total Environ. 2020;726:138149. doi: 10.1016/j.scitotenv.2020.138149. PubMed DOI PMC

Farkas K., Walker D.I., Adriaenssens E.M., McDonald J.E., Hillary L.S., Malham S.K., Jones D.L. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Res. 2020;181:115926. doi: 10.1016/j.watres.2020.115926. PubMed DOI PMC

Thomas K.V., Bijilsma L., Castiglioni S., Covaci A., Emke E., Grabic R., Hernandez F., Karolak S., Kasprzyk-Hordern B., Lindeberg R.H., et al. Comparing illicit drug use in 19 European cities through sewage analysis. Sci. Total Environ. 2012;432:432–439. doi: 10.1016/j.scitotenv.2012.06.069. PubMed DOI

Ort C., van Nuijs A.L.N., Berset J.D., Bijlsma L., Castiglioni S., Covaci A., de Voogt P., Emke E., Fatta-Kassinos D., Griffiths P., et al. Spatial differences and temporal changes in illicit drugs use in Europe quantified by wastewater analysis. Addiction. 2014;109:1338–1352. doi: 10.1111/add.12570. PubMed DOI PMC

Krizman-Matasic I., Senta I., Kostanjevecki P., Ahel M., Terzic S. Long-term monitoring of drug consumption patterns in a large-sized European city using wastewater-based epidemiology: Comparison of two sampling schemes for the assessment of multiannual trends. Sci. Total Environ. 2019;647:474–485. doi: 10.1016/j.scitotenv.2018.07.441. PubMed DOI

COVID19 Wbe Collaborative. [(accessed on 7 April 2020)]; Available online: https://www.covid19wbec.org/

Polo D., Quintela-Baluja M., Corbishley A., Jones D.L., Singer A.C., Graham D.W., Romalde J.L. Making waves: Wastewater-based epidemiology for COVID-19—Approaches and challenges for surveillance and prediction. Water Res. 2020;186:116404. doi: 10.1016/j.watres.2020.116404. PubMed DOI PMC

Ahmed F., Islam A., Kumar M., Hossain M., Bhattacharya P., Islam T., Hossen F., Hossain S., Islam S., Uddin M., et al. First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation centre through wastewater surveillance in Bangladesh. medRxiv. 2020 doi: 10.1101/2020.09.14.20194696. PubMed DOI

Albastaki A., Naji M., Lootah R., Almeheiri R., Almulla H., Almarri I., Alreyami A., Aden A., Alghafri R. First confirmed detection of SARS-COV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: The use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Sci. Total Environ. 2021;760:143350. doi: 10.1016/j.scitotenv.2020.143350. PubMed DOI PMC

Kumar M., Patel A.K., Shah A.V., Raval J., Rajpara N., Joshi M., Joshi C.G. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci. Total Environ. 2020;746:141326. doi: 10.1016/j.scitotenv.2020.141326. PubMed DOI PMC

La Rosa G., Iaconelli M., Mancini P., Bonanno F., Veneri C., Bonadonna L., Lucentini L., Suffredini E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020;736:139652. doi: 10.1016/j.scitotenv.2020.139652. PubMed DOI PMC

Bar Or I., Yaniv K., Shagan M., Ozer E., Erster O., Mendelson E., Mannasse B., Shirazi R., Kramarsky-Winter E., Nir O., et al. Regressing SARS-CoV-2 sewage measurements onto COVID-19 burden in the population: A proof-of-concept for quantitative environmental surveillance. medRxiv. 2020 doi: 10.1101/2020.04.26.20073569. PubMed DOI PMC

Guerrero-Latorre L., Ballesteros I., Villacrés-Granda I., Grandam M.G., Freire-Paspuel B., Ríos Touma B. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci. Total Environ. 2020;743:140832. doi: 10.1016/j.scitotenv.2020.140832. PubMed DOI PMC

[(accessed on 24 May 2021)]; Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html.

Leland D.S., Ginocchio C.C. Role of cell culture for virus detection in the age of technology. Clin. Microbiol. Rev. 2017;20:49–78. doi: 10.1128/CMR.00002-06. PubMed DOI PMC

Modrow S., Falke D., Truyen U., Schätzl H. Molecular Virology. Springer; Berlin, Germany: 2013. Laboratory methods for detecting viral infections; pp. 163–181. DOI

Schauflinger M., Villinger C., Walther P. Three-dimensional visualization of virus-infected cells by serial sectioning: An electron microscopic study using resin embedded cells. In: Bailer S.M., Lieber D., editors. Virus-Host Interactions: Methods and Protocols. Humana Press; Stuttgart, Germany: 2013. pp. 227–237. PubMed DOI

Dilnessa T., Zeleke H. Cell Culture, Cytopathic effect and immunofluorescence diagnosis of viral infection. J. Microbiol. Modern. Tech. 2017;2:1–8. doi: 10.15744/2575-5498.2.102. DOI

Stephenson J.R., Warnes A. Diagnostic Virology Protocols. Humana Press; Totowa, NJ, USA: 2011. p. 470. DOI

Mattison K., Bidawid S. Analytical methods for food and environmental viruses. Food Environ. Virol. 2009;1:107–122. doi: 10.1007/s12560-009-9017-6. DOI

Barardi C.R.M., Viancelli A., Rigotto C., Correa A.A., Moresco V., Souza D.S.M., ElMahdy M.E.I., Fongaro G., Pilotto M.R., Nascimento M.A. Monitoring viruses in environmental samples. Int. J. Environ. Sci. Eng. Res. 2012;3:62–79.

Calgua B., Barardi C.R.M., Bofill-Mas S., Rodriguez-Manzano J., Girones R. Detection and quantitation of infectious human adenoviruses and JC polyomaviruses in water by immunofluorescence assay. J. Virol. Methods. 2011;171:1–7. doi: 10.1016/j.jviromet.2010.09.013. PubMed DOI

Greening G.E., Hewitt J., Lewis G.D. Evaluation of integrated cell culture-PCR (C-PCR) for virological analysis of environmental samples. J. Appl. Microbiol. 2002;93:745–750. doi: 10.1046/j.1365-2672.2002.01741.x. PubMed DOI

Haramoto E., Kitajima M., Hata A., Torrey J.R., Masago Y., Sano D., Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 2018;135:68–186. doi: 10.1016/j.watres.2018.02.004. PubMed DOI

Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemestry. 1971;8:871–874. doi: 10.1016/0019-2791(71)90454-X. PubMed DOI

Crowther J.R. Methods in Molecular Biology. Humana Press; Vienna, Austria: 2009. p. 566. The ELISA Guidebook. DOI

Maier R.M., Pepper I.L., Gerba C.P. Enviromental Microbiology. 2nd ed. Academic Press; Oxford, UK: 2009. p. 598. DOI

He J. Practical guide to ELISA development. In: Wild D., editor. The Immunoassay Handbook. Elsevier Science; Oxford, UK: 2013. pp. 381–393. DOI

Sakamoto S., Putalun W., Vimolmangkang S., Phoolcharoen W., Shoyama Y., Tanaka H., Morimoto S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018;72:32–42. doi: 10.1007/s11418-017-1144-z. PubMed DOI PMC

McFeters G.A. Drinking Water Microbiology Progress and Recent Developements. Springer; Bozeman, MT, USA: 1990. p. 502. DOI

Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC

Bass J.J., Wilkinson D.J., Rankin D., Phillips B.E., Szewczyk N.J., Smith K., Atherton P.J. An overview of technical considerations for Western blotting applications to physiological research. Scand. J. Med. Sci. Sports. 2016;27:4–25. doi: 10.1111/sms.12702. PubMed DOI PMC

Jensen E.C. The basics of western blotting. Anat. Rec. 2012;295:369–371. doi: 10.1002/ar.22424. PubMed DOI

Eslami A., Lujan J. Western blotting: Sample preparation to detection. J. Vis. Exp. 2010;44:2359. doi: 10.3791/2359. PubMed DOI PMC

Kurien B., Scofield R. Western blotting. Methods. 2006;38:283–293. doi: 10.1016/j.ymeth.2005.11.007. PubMed DOI

Xu J., Sun H., Huang G., Liu G., Li Z., Yang H., Jin L., Cui X., Shi L., Ma T., et al. A fixation method for the optimisation of western blotting. Sci. Rep. 2019;9:6649. doi: 10.1038/s41598-019-43039-3. PubMed DOI PMC

Meads M.B., Medveczky P.G. Application of western blotting to diagnosis of viral infections. In: Specter S., Hodinka R., Young S., Wiedbrauk D., editors. Clinical Virology Manual. 4th ed. ASM Press; Washington, DC, USA: 2009. pp. 150–155. DOI

Mahmood T., Yang P.C. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012;4:429–434. doi: 10.4103/1947-2714.100998. PubMed DOI PMC

Taylor S.C., Berkelman T., Yadav G., Hammond M. A defined methodology for reliable quantification of western blot data. Mol. Biotechnol. 2013;55:217–226. doi: 10.1007/s12033-013-9672-6. PubMed DOI PMC

La Rosa G., Muscillo M. Molecular detection of viruses in water and sewage. In: Cook N., editor. Viruses in Food and Water: Risks, Surveillance and Control. Woodhead Publishing; Cambridge, UK: 2013. pp. 97–125. DOI

Buzdin A.A. Nucleic acids hybridization: Potentials and limitations. In: Buzdin A.A., Lukyanov S.A., editors. Nucleic Acids Hybridization Modern Applications. Springer; Dordrecht, The Netherlands: 2007. pp. 1–28. DOI

Mays Hoopes L.L. Nucleic acid blotting: Southern and northern. In: Gallagher S.R., Wiley E.A., editors. Current Protocols Essential Laboratory Techniques. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008. pp. 821–824. DOI

Yeh H.Y., Yates M.V., Chen W., Mulchandani A. Real-time molecular methods to detect infectious viruses. Semin. Cell. Dev. Biol. 2009;20:49–54. doi: 10.1016/j.semcdb.2009.01.012. PubMed DOI

Girones R., Ferrús M.A., Alonso J.L., Rodriguez-Manzano J., Calgua B., Corrêa A.A., Hundesa A., Carratala A., Bofill-Mas S. Molecular detection of pathogens in water-the pros and cons of molecular techniques. Water Res. 2010;44:4325–4339. doi: 10.1016/j.watres.2010.06.030. PubMed DOI

Van Pelt-Verkuil E., van Belkum A., Hays J.P. The polymerase chain reaction. In: van Pelt-Verkuil E., van Belkum A., Hays J.P., editors. Principles and Technical Aspects of PCR Amplification. Springer; Dordrecht, The Netherlands: 2008. pp. 1–7. DOI

Ramírez-Castillo F.Y., Loera-Muro A., Jacques M., Garneau P., Avelar-González F., Harel J., Guerrero-Barrera A.L. Waterborne pathogens: Detection methods and challenges. Pathogens. 2015;4:307–334. doi: 10.3390/pathogens4020307. PubMed DOI PMC

Kadri K. Polymerase chain reaction (PCR): Principle and applications. In: Nagpal M.L., Boldura O.M., Balta C., Enany S., editors. Synthetic Biology—New Interdisciplinary Science. IntechOpen; London, UK: 2020. DOI

Hryniszyn A., Skonieczna M., Wiszniowski J. Methods for detection of viruses in water and wastewater. Adv. Microbiol. 2013;3:442–449. doi: 10.4236/aim.2013.35060. DOI

Elnifro E.M., Ashshi A.M., Cooper R.J., Klapper P.E. Multiplex PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev. 2000;13:559–570. doi: 10.1128/CMR.13.4.559. PubMed DOI PMC

Rodríguez R.A., Pepper I.L., Gerba C.P. Application of PCR-based methods to assess the infectivity of enteric viruses in environmental samples. Appl. Environ. Microbiol. 2009;75:297–307. doi: 10.1128/AEM.01150-08. PubMed DOI PMC

Chen H. Nucleic acid detection of major foodborne viral pathogens: Human noroviruses and hepatitis A virus. In: Larramendy M., Soloneski S., editors. Nucleic Acids—From Basic Aspects to Laboratory Tools. IntechOpen; London, UK: 2016. pp. 36–57. DOI

Kralik P., Ricchi M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017;8:108. doi: 10.3389/fmicb.2017.00108. PubMed DOI PMC

Srivastava K.R., Awasthi S., Mishra P.K., Srivastava P.K. Biosensors/molecular tools for detection of waterborne pathogens. In: Prasad M.N.V., Grobelak A., editors. Waterborne Pathogens—Detection and Treatment. Butterworth-Heinemann; Oxford, UK: 2020. pp. 237–277. DOI

Watzinger F., Ebner K., Lion T. Detection and monitoring of virus infections by real-time PCR. Mol. Asp. Med. 2006;27:254–298. doi: 10.1016/j.mam.2005.12.001. PubMed DOI PMC

Singh J., Birbian N., Sinha S., Goswami A. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci. 2014;1:65–80.

Wagner E.M. Monitoring gene expression: Quantitative real-time rt-PCR. Methods Mol. Biol. 2013;1027:19–45. doi: 10.1007/978-1-60327-369-5_2. PubMed DOI

Hawkins S.F., Guest P.C. Multiplex analyses using real-time quantitative PCR. Methods Mol. Biol. 2017;1546:125–133. doi: 10.1007/978-1-4939-6730-8_8. PubMed DOI

Lievens A., Jacchia S., Kagkli D., Savini C., Querci M. Measuring digital PCR quality: Performance parameters and their optimization. PLoS ONE. 2016;11:e0153317. doi: 10.1371/journal.pone.0153317. PubMed DOI PMC

Demeke T., Dobnik D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 2018;410:4039–4050. doi: 10.1007/s00216-018-1010-1. PubMed DOI PMC

Neault N., Baig A.T., Graber T.E., D’Aoust P.M., Mercier E., Alexandrov I., Crosby D., Baird S., Mayne J., Pounds T., et al. SARS-CoV-2 Protein in Wastewater Mirrors COVID-19 Prevalence. medRxiv. 2020 doi: 10.1101/2020.09.01.20185280. DOI

Ongerth J.E. RT qLAMP-Direct Detection of SARS-CoV-2 in Raw Sewage. medRxiv. 2020 doi: 10.1101/2020.10.01.20205492. PubMed DOI PMC

Johnston J., Behrens S. Seasonal Dynamics of the Activated Sludge Microbiome in Sequencing Batch Reactors, Assessed Using 16S rRNA Transcript Amplicon Sequencing. Appl. Environ. Microbiol. 2020:86. doi: 10.1128/AEM.00597-20. PubMed DOI PMC

Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012;2012:251364. doi: 10.1155/2012/251364. PubMed DOI PMC

Chan A.W., Naphtali J., Schellhorn H.E. High-throughput DNA sequencing technologies for water and wastewater analysis. Sci. Prog. 2019;102:351–376. doi: 10.1177/0036850419881855. PubMed DOI PMC

Urban L., Holzer A., Baronas J.J., Hall M.B., Braeuninger-Weimer P., Scherm M.J., Kunz D.J., Perera S.N., Martin-Herranz D.E., Tipper E.T., et al. Freshwater monitoring by nanopore sequencing. eLife. 2021;10:e61504. doi: 10.7554/eLife.61504. PubMed DOI PMC

Acharya K., Blackburn A., Mohammed J., Haile A.T., Hiruy A.M., Werner D. Metagenomic water quality monitoring with a portable laboratory. Water Res. 2020;184:116112. doi: 10.1016/j.watres.2020.116112. PubMed DOI PMC

Kemp S., Collier D., Datir R., Ferreira I., Gayed S., Jahun A., Hosmillo M., Rees-Spear C., Mlcochova P., Lumb I.U., et al. Neutralising antibodies in Spike mediated SARS-CoV-2 adaptation. Nature. 2021;592:277–282. doi: 10.1038/s41586-021-03291-y. PubMed DOI PMC

Crits-Christoph A., Kantor R.S., Olm M.R., Whitney O.N., Al-Shayeb B., Lou Y.C., Flamholz A., Kennedy L.C., Greenwald H., Hinkle A., et al. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. mBio. 2021;12:e02703–e02720. doi: 10.1128/mBio.02703-20. PubMed DOI PMC

Izquierdo-Lara R., Elsinga G., Heijnen L., Oude Munnink B.B., Schapendonk C.M.E., Nieuwenhuijse D., Kon M., Lu L., Aarestrup F.M., Lycett S., et al. Monitoring SdumkARS-CoV-2 circulation and diversity through community wastewater sequencing. medRxiv. 2020 doi: 10.1101/2020.09.21.20198838. PubMed DOI PMC

Jahn K., Dreifuss D., Topolsky I., Kull A., Ganesanandamoorthy P., Fernandez-Cassi X., Bänziger C., Stachler E., Fuhrmann L., Jablonski K.P., et al. Detection of SARS-CoV-2 variants in Switzerland by genomic analysis of wastewater samples. Infect. Dis. 2021 doi: 10.1101/2021.01.08.21249379. preprint. DOI

Dumke R., de la Cruz Barron M., Oertel R., Helm B., Kallies R., Berendonk T.U., Dalpke A. Evaluation of two methods to concentrate SARS-CoV-2 from untreated wastewater. Pathogens. 2021;10:195. doi: 10.3390/pathogens10020195. PubMed DOI PMC

Bhalla N., Jolly P., Formisano N., Estrela P. Introduction to biosensors. Essays Biochem. 2016;60:1. doi: 10.1042/EBC20150001. PubMed DOI PMC

Men D., Zhou J., Li W., Leng Y., Chen X., Tao S., Zhang X.E. Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection. ACS Appl. Mater. Interfaces. 2016;8:17472. doi: 10.1021/acsami.6b04786. PubMed DOI

Yang Z., Anglès d‘Auriac M., Goggins S., Kasprzyk-Hordern B., Thomas K.V., Frost C.G., Estrela P. A novel DNA biosensor using a ferrocenyl intercalator applied to the potential detection of human population biomarkers in wastewater. Environ. Sci. Technol. 2015;49:5609. doi: 10.1021/acs.est.5b00637. PubMed DOI

Pilevar M., Kim K.T., Lee W.H. Recent advances in biosensors for detecting viruses in water and wastewater. J. Hazard. Mater. 2021;410:124656. doi: 10.1016/j.jhazmat.2020.124656. PubMed DOI

Velusamy V., Arshak K., Korostynska O., Oliwa K., Adley C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010;28:232–254. doi: 10.1016/j.biotechadv.2009.12.004. PubMed DOI

Ahmed A., Rushworth J.V., Hirst N.A., Millner P.A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 2014;27:631. doi: 10.1128/CMR.00120-13. PubMed DOI PMC

Mustafa F., Andreescu S. Chemical and biological sensors for food-quality monitoring and smart packaging. Foods. 2018;7:168. doi: 10.3390/foods7100168. PubMed DOI PMC

Ashrafi A.M., Koudelkova Z., Sedlackova E., Richtera L., Adam V. Electrochemical sensors and biosensors for determination of mercury ions. J. Electrochem. Soc. 2018;165:B824–B834. doi: 10.1149/2.0381816jes. DOI

Peixoto A.C., Silva A.F. 11—Smart devices: Micro- and nanosensors. In: Rodrigues L., Mota M., editors. Bioinspired Materials for Medical Applications. Woodhead Publishing; Cambridge, UK: 2017. pp. 297–329.

Thevenot D.R., Toth K., Durst R.A., Wilson G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999;71:2333–2348. doi: 10.1351/pac199971122333. PubMed DOI

Ilkhani H., Farhad S. A novel electrochemical DNA biosensor for Ebola virus detection. Anal. Biochem. 2018;557:151–155. doi: 10.1016/j.ab.2018.06.010. PubMed DOI

Saylan Y., Erdem O., Unal S., Denizli A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors. 2019;9:65. doi: 10.3390/bios9020065. PubMed DOI PMC

Freitas T.A., Proenca C.A., Baldo T.A., Materon E.M., Wong A., Magnani R.F., Faria R.C. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta. 2019;205:120110. doi: 10.1016/j.talanta.2019.07.005. PubMed DOI

Ozer T., Geiss B.J., Henry C.S. Chemical and Biological Sensors for Viral Detection. J. Electrochem. Soc. 2020;167:037523. doi: 10.1149/2.0232003JES. PubMed DOI PMC

Han J.H., Lee D., Chew C.H.C., Kim T., Pak J.J. A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement. Sens. Actuators B Chem. 2016;228:36–42. doi: 10.1016/j.snb.2015.07.068. DOI

Kaya S.I., Karadurmus L., Ozcelikay G., Bakirhan N.K., Ozkan S.A. Electrochemical virus detections with nanobiosensors. In: Han B., Tomer V.K., Nguyen T.A., Farmani A., Kumar Singh P., editors. Nanosensors for Smart Cities. Elsevier; Amsterdam, The Netherlands: 2020. pp. 303–326.

Siuzdak K., Niedziałkowski P., Sobaszek M., Łęga T., Sawczak M., Czaczyk E., Dziabowska K., Ossowski T., Nidzworski D., Bogdanowicz R. Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies. Sens. Actuators B Chem. 2019;280:263–271. doi: 10.1016/j.snb.2018.10.005. DOI

Anik Ü., Tepeli Y., Sayhi M., Nsiri J., Diouani M.F. Towards the electrochemical diagnostic of influenza virus: Development of a graphene–Au hybrid nanocomposite modified influenza virus biosensor based on neuraminidase activity. Analyst. 2018;143:150–156. doi: 10.1039/C7AN01537B. PubMed DOI

Shariati M., Ghorbani M., Sasanpour P., Karimizefreh A. An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment. Anal. Chim. Acta. 2019;1048:31–41. doi: 10.1016/j.aca.2018.09.062. PubMed DOI

Cabral-Miranda G., Cardoso A.R., Ferreira L.C.S., Sales M.G.F., Bachmann M.F. Biosensor-based selective detection of Zika virus specific antibodies in infected individuals. Biosens. Bioelectron. 2018;113:101–107. doi: 10.1016/j.bios.2018.04.058. PubMed DOI

Palomar Q., Gondran C., Marks R., Cosnier S., Holzinger M. Impedimetric quantification of anti-dengue antibodies using functional carbon nanotube deposits validated with blood plasma assays. Electrochim. Acta. 2018;274:84–90. doi: 10.1016/j.electacta.2018.04.099. DOI

Lai H.C., Chin S.F., Pang S.C., Sum H., Sia M., Perera D. Carbon nanoparticles based electrochemical biosensor strip for detection of Japanese Encephalitis Virus. J. Nanomat. 2017;2017:7. doi: 10.1155/2017/3615707. DOI

Lee T., Park S.Y., Jang H., Kim G.H., Lee Y., Park C., Mohsen M., Lee M.H., Min J. Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. Mater. Sci. Eng. C. 2019;99:511–519. doi: 10.1016/j.msec.2019.02.001. PubMed DOI

Zhang Y., Gao Y., Zhang X., Wang H., Xia T., Bian C., Liang S., Tng X., Wang X. Electrochemical immunosensor for HBe antigen detection based on a signal amplification strategy: The co-catalysis of horseradish peroxidase and nanoporous gold. Sens. Actuators B Chem. 2019;284:296–304. doi: 10.1016/j.snb.2018.12.157. DOI

Hou Y.H., Wang J.J., Jiang Y.Z., Lv C., Xia L., Hong S.L., Lin M., Lin Y., Zhang Z.L., Pang D.W. A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens. Bioelectron. 2018;99:186–192. doi: 10.1016/j.bios.2017.07.035. PubMed DOI

Layqah L.A., Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta. 2019;186:224–233. doi: 10.1007/s00604-019-3345-5. PubMed DOI PMC

Sayhi M., Ouerghi O., Belgacem K., Arbi M., Tepeli Y., Ghram A., Anik U., Osterlunf L., Laouini D., Diouani M.F. Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens. Bioelectron. 2018;107:170–177. doi: 10.1016/j.bios.2018.02.018. PubMed DOI

Gao Z., Li Y., Zhang X., Feng J., Kong L., Wang P., Chen Z., Dong Y., Wei Q. Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels. Biosens. Bioelectron. 2018;102:189–195. doi: 10.1016/j.bios.2017.11.032. PubMed DOI

Tu H., Lin K., Lun Y., Yu L. Magnetic bead/capture DNA/glucose-loaded nanoliposomes for amplifying the glucometer signal in the rapid screening of hepatitis C virus RNA. Anal. Bioanal. Chem. 2018;410:3661–3669. doi: 10.1007/s00216-018-1055-1. PubMed DOI

Ganser L.R., Kelly M.L., Herschlag D., Al-Hashimi H.M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 2019;20:474–489. doi: 10.1038/s41580-019-0136-0. PubMed DOI PMC

Zhang H., Miller B.L. Immunosensor-based label-free and multiplex detection of influenza viruses: State of the art. Biosens. Bioelectron. 2019;141:111476. doi: 10.1016/j.bios.2019.111476. PubMed DOI PMC

Xiao T., Huang J., Wang D., Meng T., Yang X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta. 2020;206:120210. doi: 10.1016/j.talanta.2019.120210. PubMed DOI

Faria H.A.M., Zucolotto V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens. Bioelectron. 2019;131:149–155. doi: 10.1016/j.bios.2019.02.018. PubMed DOI

Khater M., de la Escosura-Muñiz A., Quesada-González D., Merkoçi A. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal. Chim. Acta. 2019;1046:123–131. doi: 10.1016/j.aca.2018.09.031. PubMed DOI

Malik A.A., Nantasenamat C., Piacham T. Molecularly imprinted polymer for human viral pathogen detection. Mater. Sci. Eng. C. 2017;77:1341–1348. doi: 10.1016/j.msec.2017.03.209. PubMed DOI

Babamiri B., Salimi A., Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens. Bioelectron. 2018;117:332–339. doi: 10.1016/j.bios.2018.06.003. PubMed DOI

Wangchareansak T., Thitithanyanont A., Chuakheaw D., Gleeson M.P., Lieberzeit P.A., Sangma C. Influenza A virus molecularly imprinted polymers and their application in virus sub-type classification. J. Mater. Chem. B. 2013;1:2190–2197. doi: 10.1039/c3tb00027c. PubMed DOI

Wangchareansak T., Thitithanyanont A., Chuakheaw D., Gleeson M.P., Lieberzeit P.A., Sangma C. A novel approach to identify molecular binding to the influenza virus H5N1: Screening using molecularly imprinted polymers (MIPs) MedChemComm. 2014;5:617–621. doi: 10.1039/C3MD00272A. DOI

Tai D.F., Lin C.Y., Wu T.Z., Chen L.K. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal. Chem. 2005;77:5140–5143. doi: 10.1021/ac0504060. PubMed DOI

Altintas Z., Pocock J., Thompson K.A., Tothill I.E. Comparative investigations for adenovirus recognition and quantification: Plastic or natural antibodies? Biosens. Bioelectron. 2015;74:996–1004. doi: 10.1016/j.bios.2015.07.076. PubMed DOI

Jenik M., Schirhagl R., Schirk C., Hayden O., Lieberzeit P., Blaas D., Paul G. Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance. Anal. Chem. 2009;81:5320–5326. doi: 10.1021/ac8019569. PubMed DOI

Lodder W., de Roda Husman A.M. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020;5:533–534. doi: 10.1016/S2468-1253(20)30087-X. PubMed DOI PMC

Mao K., Zhang H., Yang Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environ. Sci. Technol. 2020;54:3733–3735. doi: 10.1021/acs.est.0c01174. PubMed DOI

Klug K.E., Reynolds K.A., Yoon J.Y. A Capillary Flow Dynamics-Based Sensing Modality for Direct Environmental Pathogen Monitoring. Chem. Eur. J. 2018;24:6025–6029. doi: 10.1002/chem.201800085. PubMed DOI

McCracken K.E., Tat T., Paz V., Reynolds K.A., Yoon J.Y. ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers; St. Joseph, MI, USA: 2017. Immunoagglutinated particle rheology sensing on a microfluidic paper-based analytical device for pathogen detection. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...