A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything

. 2017 ; 8 () : 108. [epub] 20170202

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28210243

Real time PCR (quantitative PCR, qPCR) is now a well-established method for the detection, quantification, and typing of different microbial agents in the areas of clinical and veterinary diagnostics and food safety. Although the concept of PCR is relatively simple, there are specific issues in qPCR that developers and users of this technology must bear in mind. These include the use of correct terminology and definitions, understanding of the principle of PCR, difficulties with interpretation and presentation of data, the limitations of qPCR in different areas of microbial diagnostics and parameters important for the description of qPCR performance. It is not our intention in this review to describe every single aspect of qPCR design, optimization, and validation; however, it is our hope that this basic guide will help to orient beginners and users of qPCR in the use of this powerful technique.

Zobrazit více v PubMed

Anonymous (1994). ISO 5725-1 - Accuracy (Trueness and Precision) of Measurement Methods and Results — Part 1: General Principles and Definitions. Geneva: ISO - International Organization for Standardization.

Anonymous (2009). Protocol for the Validation of Alternative Microbiological Methods. Søborg: NordVal International /Nordic Committee on Food Analysis, NMKL.

Anonymous (2011). ISO 16140 - Microbiology of Food and Animal Feeding Stuffs - Protocol for the Validation of Alternative Methods. Geneva: ISO - International Organization for Standardization.

Anonymous (2012). Methods Committee Guidelines for Validation of Microbiological Methods for Food and Environmental Surfaces. Rockville, MD: AOAC INTERNATIONAL.

Anonymous R. (2013). Terrestrial Manual, 7th Edn, Chapter 1.1.5. Principles and Methods of Validation of Diagnostic Assays for Infectious Diseases (Version adopted in May, 2013). Paris: World Organisation for Animal Health.

Anonymous R. (2014). OIE Validation Guidelines, 3.6.5. Statistical Approaches To Validation. Paris: World Organisation for Animal Health.

Anonymous R. (2015a). Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, 2nd Edn. Silver Spring, MD: US Food & Drug Administration; Office of Foods and Veterinary Medicine.

Anonymous R. (2015b). JRC Technical Report - Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. Ispra: European Commission, Joint Research Centre; Institute for Health and Consumer Protection.

Armbruster D. A., Pry T. (2008). Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29(Suppl. 1), S49–S52. PubMed PMC

Birch L., Dawson C. E., Cornett J. H., Keer J. T. (2001). A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett. Appl. Microbiol. 33, 296–301. 10.1046/j.1472-765X.2001.00999.xc PubMed DOI

Broeders S., Huber I., Grohmann L., Berben G., Taverniers I., Mazzara M., et al. (2014). Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci. Technol. 37, 115–126. 10.1016/j.tifs.2014.03.008 DOI

Burns M., Valdivia H. (2008). Modelling the limit of detection in real-time quantitative PCR. Eur. Food Res. Technol. 226, 1513–1524. 10.1007/s00217-007-0683-z DOI

Bustin S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193. 10.1677/jme.0.0250169 PubMed DOI

Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. . (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. 10.1373/clinchem.2008.112797 PubMed DOI

Chaouachi M., Bérard A., Saïd K. (2013). Relative quantification in seed GMO analysis: state of art and bottlenecks. Transgenic Res. 22, 461–476. 10.1007/s11248-012-9684-1 PubMed DOI

Dreo T., Pirc M., Ramšak Ž., Pavšic J., Milavec M., Zel J., et al. . (2014). Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal. Bioanal. Chem. 406, 6513–6528. 10.1007/s00216-014-8084-1 PubMed DOI

Fluss R., Faraggi D., Reiser B. (2005). Estimation of the Youden Index and its associated cutoff point. Biom. J. 47, 458–472. 10.1002/bimj.200410135 PubMed DOI

Higuchi R., Dollinger G., Walsh P. S., Griffith R. (1992). Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10, 413–417. PubMed

Hoffmann B., Beer M., Reid S. M., Mertens P., Oura C. A., van Rijn P. A., et al. . (2009). A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet. Microbiol. 139, 1–23. 10.1016/j.vetmic.2009.04.034 PubMed DOI

Holland P. M., Abramson R. D., Watson R., Gelfand D. H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 88, 7276–7280. PubMed PMC

Johnson G., Nolan T., Bustin S. A. (2013). Real-time quantitative PCR, pathogen detection and MIQE. Methods Mol. Biol. 943, 1–16. 10.1007/978-1-60327-353-4_1 PubMed DOI

Klein D. (2002). Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 8, 257–260. 10.1016/S1471-4914(02)02355-9 PubMed DOI

Kralik P., Slana I., Kralova A., Babak V., Whitlock R. H., Pavlik I. (2011). Development of a predictive model for detection of Mycobacterium avium subsp. paratuberculosis in faeces by quantitative real time PCR. Vet. Microbiol. 149, 133–138. 10.1016/j.vetmic.2010.10.009 PubMed DOI

Kubista M., Andrade J. M., Bengtsson M., Forootan A., Jonak J., Lind K., et al. . (2006). The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125. 10.1016/j.mam.2005.12.007 PubMed DOI

Levin R. E. (2012). PCR detection of aflatoxin producing fungi and its limitations. Int. J. Food Microbiol. 156, 1–6. 10.1016/j.ijfoodmicro.2012.03.001 PubMed DOI

Margot H., Zwietering M. H., Joosten H., O'Mahony E., Stephan R. (2015). Evaluation of different buffered peptone water (BPW) based enrichment broths for detection of Gram-negative foodborne pathogens from various food matrices. Int. J. Food Microbiol. 214, 109–115. 10.1016/j.ijfoodmicro.2015.07.033 PubMed DOI

Molenaar-de Backer M. W., de Waal M., Sjerps M. C., Koppelman M. H. (2016). Validation of new real-time polymerase chain reaction assays for detection of hepatitis A virus RNA and parvovirus B19 DNA. Transfusion 56, 440–448. 10.1111/trf.13334 PubMed DOI

Nocker A., Camper A. K. (2009). Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol. Lett. 291, 137–142. 10.1111/j.1574-6968.2008.01429.x PubMed DOI

Nocker A., Cheung C. Y., Camper A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67, 310–320. 10.1016/j.mimet.2006.04.015 PubMed DOI

Nutz S., Döll K., Karlovsky P. (2011). Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: application to qPCR assays for Fusarium verticillioides and F. proliferatum. Anal. Bioanal. Chem. 401, 717–726. 10.1007/s00216-011-5089-x PubMed DOI PMC

Osei Sekyere J., Govinden U., Essack S. Y. (2015). Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria. J. Appl. Microbiol. 119, 1219–1233. 10.1111/jam.12918 PubMed DOI

Pavšič J., Devonshire A. S., Parkes H., Schimmel H., Foy C. A., Karczmarczyk M., et al. . (2015). Standardization of nucleic acid tests for clinical measurements of bacteria and viruses. J. Clin. Microbiol. 53, 2008–2014. 10.1128/JCM.02136-14 PubMed DOI PMC

Pavšic J., Žel J., Milavec M. (2016). Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Anal. Bioanal. Chem. 408, 107–121. 10.1007/s00216-015-9107-2 PubMed DOI PMC

Ricchi M., Savi R., Bolzoni L., Pongolini S., Grant I. R., De Cicco C., et al. . (2016). Estimation of Mycobacterium avium subsp. paratuberculosis load in raw bulk tank milk in Emilia-Romagna Region (Italy) by qPCR. Microbiologyopen 5, 551–559. 10.1002/mbo3.350 PubMed DOI PMC

Rijsman L. H., Monkelbaan J. F., Kusters J. G. (2016). Clinical consequences of PCR based diagnosis of intestinal parasitic infections. J. Gastroenterol. Hepatol. 31, 1808–1815. 10.1111/jgh.13412 PubMed DOI

Rodriguez-Lazaro D., Cook N., Hernandez M. (2013). Real-time PCR in food science: PCR diagnostics. Curr. Issues Mol. Biol. 15, 39–44. PubMed

Ruijter J. M., Ramakers C., Hoogaars W. M., Karlen Y., Bakker O., van den Hoff M. J., et al. . (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37:e45. 10.1093/nar/gkp045 PubMed DOI PMC

Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., et al. . (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491. PubMed

Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., et al. . (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354. PubMed

Slana I., Kralik P., Kralova A., Pavlik I. (2008). On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 128, 250–257. 10.1016/j.ijfoodmicro.2008.08.013 PubMed DOI

Watzinger F., Ebner K., Lion T. (2006). Detection and monitoring of virus infections by real-time PCR. Mol. Aspects Med. 27, 254–298. 10.1016/j.mam.2005.12.001 PubMed DOI PMC

Yang S., Rothman R. E. (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 4, 337–348. 10.1016/S1473-3099(04)01044-8 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...