• This record comes from PubMed

Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms

. 2017 May 19 ; 17 (5) : . [epub] 20170519

Language English Country Switzerland Media electronic

Document type Journal Article

This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.

See more in PubMed

Belfort M., Saade G., Thom E., Blackwell S., Reddy U., Thorp J., Tita A., Miller R., Peaceman A., McKenna D., et al. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis. Obstet. Gynecol. Surv. 2015;70:735–737. doi: 10.1097/OGX.0000000000000276. PubMed DOI PMC

Sholapurkar S. The unresolved role of cardiotocography (CTG), fetal ECG (STAN) and intrapartum fetal pulse oximetry (IFPO) as diagnostic methods for fetal hypoxia. J. Obstet. Gynaecol. 2014;34:757. doi: 10.3109/01443615.2014.920797. PubMed DOI

Clifford G., Silva I., Behar J., Moody G. Non-invasive fetal ECG analysis. Physiol. Meas. 2014;35:1521–1536. doi: 10.1088/0967-3334/35/8/1521. PubMed DOI PMC

Roche J., Hon E. The Fetal Electrocardiogram. v. Comparison of Lead Systems. Am. J. Obstet. Gynecol. 1965;92:1149–1159. doi: 10.1016/S0002-9378(15)33099-4. PubMed DOI

Solum T. A comparison of the Three Methods for External Fetal Cardiography. Acta Obstet. Gynecol. Scand. 1980;59:123–126. doi: 10.3109/00016348009154627. PubMed DOI

Cohen W., Ommani S., Hassan S., Mirza F., Solomon M., Brown R., Schifrin B., Himsworth J., Hayes-Gill B. Accuracy and reliability of fetal heart rate monitoring using maternal abdominal surface electrodes. Acta Obstet. Gynecol. Scand. 2012;91:1306–1313. doi: 10.1111/j.1600-0412.2012.01533.x. PubMed DOI

Moghavvemi M., Tan B., Tan S. A non-invasive PC-based measurement of fetal phonocardiography. Sens. Actuators A Phys. 2003;107:96–103. doi: 10.1016/S0924-4247(03)00254-1. DOI

Kovacs F., Horvath C., Balogh A., Hosszu G. Fetal phonocardiography-Past and future possibilities. Comput. Methods Progr. Biomed. 2011;104:19–25. doi: 10.1016/j.cmpb.2010.10.006. PubMed DOI

Adithya P.C., Sankar R., Moreno W., Hart S. Trends in fetal monitoring through phonocardiography: Challenges and future directions. Biomed. Signal Proces. Control. 2017;33:289–305. doi: 10.1016/j.bspc.2016.11.007. DOI

Alem O., Sander T., Mhaskar R., Leblanc J., Eswaran H., Steinhoff U., Okada Y., Kitching J., Trahms L., Knappe S. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 2015;60:4797–4811. doi: 10.1088/0031-9155/60/12/4797. PubMed DOI

Fehlert E., Willmann K., Fritsche L., Linder K., Mat-Husin H., Schleger F., Weiss M., Kiefer-Schmidt I., Brucker S., Haring H.U., et al. Gestational diabetes alters the fetal heart rate variability during an oral glucose tolerance test: A fetal magnetocardiography study. Int. J. Obstet. Gynaecol. 2016 doi: 10.1111/1471-0528.14474. PubMed DOI

Bolin E., Siegel E., Eswaran H., Lowery C., Zakaria D., Best T. Cardiac time intervals derived by magnetocardiography in fetuses exposed to pregnancy hypertension syndromes. J. Perinatol. 2016;36:643–648. doi: 10.1038/jp.2016.58. PubMed DOI

Vaisman S., Salem S.Y., Holcberg G., Geva A. Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 2012;42:171–179. doi: 10.1016/j.compbiomed.2011.11.005. PubMed DOI

Cesarelli M., Ruffo M., Romano M., Bifulco P. Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Progr. Biomed. 2012;107:513–523. doi: 10.1016/j.cmpb.2011.11.008. PubMed DOI

Di Maria C., Liu C., Zheng D., Murray A., Langley P. Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components. Physiol. Meas. 2014;35:1649–1664. doi: 10.1088/0967-3334/35/8/1649. PubMed DOI

Belfort M., Saade G., Thom E., Blackwell S., Reddy U., Thorp J.M., Jr., Tita A., Miller R., Peaceman A., McKenna D., et al. A randomized trial of intrapartum fetal ECG ST-segment analysis. N. Engl. J. Med. 2015;373:632–641. doi: 10.1056/NEJMoa1500600. PubMed DOI PMC

Clifford G., Liu C., Moody B., Springer D., Silva I., Li Q., Mark R. Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016; Proceedings of the Computing in Cardiology Conference (CinC); Vancouver, BC, Canada. 11–14 September 2016.

Leaning J. Electronic fetal monitoring. BMJ. 2001;322:1436–1437. PubMed PMC

Marzbamad F., Kimura Y., Endo M., Palaniswami M., Khandoker A.H. Automated Measurement of Fetal Isovolumic Contraction Time from Doppler Ultrasound Signals without Using Fetal Electrocardiography. IEEE; Cambridge, MA, USA: 2014.

Magenes G., Signorinix M.G., Arduini D. Classification of Cardiotocographic Records by Neural Networks. IEEE; Piscataway, NJ, USA: 2000.

Reinhard J., Hayes-Gill B.R., Yi Q., Hatzmann H., Schiermeier S. Comparison of non-invasive fetal electrocardiogram to Doppler cardiotocogram during the 1st stage of labor. J. Perinat. Med. 2010;38:179–185. doi: 10.1515/jpm.2010.025. PubMed DOI

Cohen W., Hayes-Gill B. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques. Acta Obstet. Gynecol. Scand. 2014;93:590–595. doi: 10.1111/aogs.12387. PubMed DOI

Racz S., Hantosi E., Marton S., Toth K., Ruzsa D., Halvax L., Bodis J., Farkas B. Impact of maternal obesity on the fetal electrocardiogram during labor. J. Matern. Fetal Neonat. Med. 2016;29:3712–3716. doi: 10.3109/14767058.2016.1141887. PubMed DOI

Jezewski J., Wrobel J., Horoba K. Comparison of Doppler ultrasound and direct electrocardiography acquisition techniques for quantification of fetal heart rate variability. IEEE Trans. Biomed. Eng. 2006;53:855–864. doi: 10.1109/TBME.2005.863945. PubMed DOI

Matonia A., Jezewski J., Horoba K., Gacek A., Labaj P. The Maternal ECG Suppression Algorithm for Efficient Extraction of the Fetal ECG From Abdominal Signal; Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; New York, NY, USA. 31 August–3 September 2006; pp. 3106–3109. PubMed

Peters M., Crowe J., Pieri J.F., Quartero H., Hayes-Gill B., James D., Stinstra J., Shakespeare S. Monitoring the fetal heart non-invasively: A review of methods. J. Perinat. Med. 2001;29:408–416. doi: 10.1515/JPM.2001.057. PubMed DOI

Sameni R., Clifford G.D. A Review of Fetal ECG Signal Processing Issues and Promising Directions. Open Pacing Electrophysiol. Ther. J. 2010;3:4–20. doi: 10.2174/1876536X01003010004. PubMed DOI PMC

Vullings R., Peters C., Hermans M., Wijn P., Oei S., Bergmans J. A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings. Physiol. Meas. 2010;31:935–951. doi: 10.1088/0967-3334/31/7/005. PubMed DOI

Marzbanrad F., Kimura Y., Funamoto K., Sugibayashi R., Endo M., Ito T., Palaniswami M., Khandoker A. Automated estimation of fetal cardiac timing events from doppler ultrasound signal using hybrid models. IEEE J. Biomed. Health Inform. 2014;18:1169–1177. doi: 10.1109/JBHI.2013.2286155. PubMed DOI

Andreotti F., Grasser F., Malberg H., Zaunseder S. Non-Invasive Fetal ECG Signal Quality Assessment for Multichannel Heart Rate Estimation. IEEE Trans. Biomed. Eng. 2017 doi: 10.1109/TBME.2017.2675543. PubMed DOI

Marzbanrad F., Khandoker A., Kimura Y., Palaniswami M., Clifford G. Estimating fetal gestational age using cardiac valve intervals; Proceedings of the Computing in Cardiology; Vancouver, BC, Canada. 11–14 September 2016.

Datian Y., Xuemei O. Application of Wavelet Analysis in Detection of Fetal ECG. IEEE; Piscataway, NJ, USA: 1996. pp. 1043–1044.

Khamene A., Negahdaripoure S. A new method for the extraction of fetal ECG from the composite abdominal signal. IEEE Trans. Biomed. Eng. 2000;47:507–516. doi: 10.1109/10.828150. PubMed DOI

Karvounis E., Papaloukas C., Fotiadis D., Michails L. Fetal Heart Rate Extraction from Composite Maternal ECG Using Complex Continuous Wavelet Transform; Proceedings of the Computers in Cardiology; Chicago, IL, USA. 19–22 September 2004; pp. 737–740.

Shi Z., Zhang C. Semi-blind source extraction for fetal electrocardiogram extraction by combining non-Gaussianity and time-correlation. Neurocomputing. 2007;70:1574–1581. doi: 10.1016/j.neucom.2006.10.103. DOI

Bergveld P., Meijer W. A New Technique for the Suppression of the MECG. IEEE Trans. Biomed. Eng. 1981;BME-28:348–354. doi: 10.1109/TBME.1981.324803. PubMed DOI

Al-Zaben A., Al-Smadi A. Extraction of foetal ECG by combination of singular value decomposition and neuro-fuzzy inference system. Phys. Med. Biol. 2006;51:137–143. doi: 10.1088/0031-9155/51/1/010. PubMed DOI

Sameni R., Jutten C., Shamsollahi M. What ICA Provides for ECG Processing: Application to Noninvasive Fetal ECG Extraction; Proceedings of the International Symposium on Signal Processing and Information Technology; Vancouver, BC, Canada. 27–30 August 2006; pp. 656–661.

De Lathauwer L., De Moor B., Vandewalle J. Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 2000;47:567–572. doi: 10.1109/10.841326. PubMed DOI

Hon E., Lee S. Averaging techniques in fetal electrocardiography. Med. Electron. Biol. Eng. 1964;2:71–76. doi: 10.1007/BF02474362. PubMed DOI

Swarnalatha R., Prasad D. A novel technique for extraction of FECG using multi stage adaptive filtering. J. Appl. Sci. 2010;10:319–324. doi: 10.3923/jas.2010.319.324. DOI

Poularikas A.D., Ramadan Z.M. Adaptive Filtering Primer with MATLAB. CRC/Taylor & Francis; Boca Raton, FL, USA: 2006.

Wei Z., Xueyun W., Jian J.Z., Hongxing L. Noninvasive fetal ECG estimation using adaptive comb filter. Comput. Methods Progr. Biomed. 2013;112:125–134. doi: 10.1016/j.cmpb.2013.07.015. PubMed DOI

Shadaydeh M., Xiao Y., Ward R. Extraction of Fetal ECG Using Adaptive Volterra Filters; Proceedings of the 16th European Signal Processing Conference; Lausanne, Switzerland. 25–29 August 2008.

Sameni R., Shamsollahi M., Jutten C., Babaie-Zadeh M. Filtering Noisy ECG Signals Using the Extended Kalman Filter Based on a Modified Dynamic ECG Model; Proceedings of the Computers in Cardiology; Lyon, France. 25–28 September 2005; pp. 1017–1020.

Niknazar M., Rivet B., Jutten C. Fetal ECG extraction by extended state kalman filtering based on single-channel recordings. IEEE Trans. Biomed. Eng. 2013;60:1345–1352. doi: 10.1109/TBME.2012.2234456. PubMed DOI

Reaz M., Wei L. Adaptive Linear Neural Network Filter for Fetal ECG Extraction; the Proceedings of Intelligent Sensing and Information Processing; Chennai, India. 4–7 January 2004; pp. 321–324.

Assaleh K. Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems. IEEE Trans. Biomed. Eng. 2007;54:59–68. doi: 10.1109/TBME.2006.883728. PubMed DOI

Kedir-Talha M., Guettouche M., Bousbia-Salah A. Combination of a FIR Filter With a Genetic Algorithm for The Extraction of a Fetal ECG; the Proceedings of Signals, Systems and Computers (ASILOMAR); Pacific Grove, CA, USA. 7–10 November 2010; pp. 76–79.

Kam A., Cohen A. Detection of fetal ECG with IIR adaptive filtering and genetic algorithms; Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing; Phoenix, AZ, USA. 15–19 March 1999; pp. 2335–2338.

Coquillard G., Palao B., Patterson B. Quantification of intracellular HPV E6/E7 mRNA expression increases the specificity and positive predictive value of cervical cancer screening compared to HPV DNA. Gynecol. Oncol. 2011;120:89–93. doi: 10.1016/j.ygyno.2010.09.013. PubMed DOI

Cosman P., Gray R., Olshen R. Evaluating Quality of Compressed Medical Images: SNR, Subjective Rating, and Diagnostic Accuracy. Proc. IEEE. 1994;82:919–932. doi: 10.1109/5.286196. DOI

Wu S., Shen Y., Zhou Z., Lin L., Zeng Y., Gao X. Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Comput. Biol. Med. 2013;43:1622–1627. doi: 10.1016/j.compbiomed.2013.07.028. PubMed DOI

Behar J., Johnson A., Clifford G., Oster J. A comparison of single channel fetal ECG extraction methods. Ann. Biomed. Eng. 2014;42:1340–1353. doi: 10.1007/s10439-014-0993-9. PubMed DOI

Ma Y., Xiao Y., Wei G., Sun J. A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction. Meas. Sci. Technol. 2015;27 doi: 10.1088/0957-0233/27/1/015703. DOI

Ma Y., Xiao Y., Wei G., Sun J., Wei H. A Hybrid Nonlinear Adaptive Noise Canceller for Fetal ECG Extraction. Institute of Electrical and Electronics Engineers Inc.; Hong Kong, China: Dec 16–19, 2015. pp. 811–814.

Andreotti F., Riedl M., Himmelsbach T., Wedekind D., Wessel N., Stepan H., Schmieder C., Jank A., Malberg H., Zaunseder S. Robust fetal ECG extraction and detection from abdominal leads. Physiol. Meas. 2014;35:1551–1567. doi: 10.1088/0967-3334/35/8/1551. PubMed DOI

Subhashini S., Jagannath D., Selvakumar A. Extricating Non Invasive Fetal ECG by Adaptive Optimization Technique. Institute of Electrical and Electronics Engineers Inc.; Coimbatore, India: 2014. pp. 1–5.

Martinek R., Kelnar M., Koudelka P., Vanus J., Bilik P., Janku P., Nazeran H., Zidek J. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator. Physiol. Meas. 2016;37:238–256. doi: 10.1088/0967-3334/37/2/238. PubMed DOI

Martinek R., Sincl A., Vanus J., Kelnar M., Bilik P., Machacek Z., Zidek J. Modelling of fetal hypoxic conditions based on virtual instrumentation. Adv. Intell. Syst. Comput. 2016;427:249–259.

Martinek R., Kelnar M., Vojcinak P., Koudelka P., Vanus J., Bilik P., Janku P., Nazeran H., Zidek J. Virtual simulator for the generation of patho-physiological foetal ECGs during the prenatal period. Electron. Lett. 2015;51:1738–1740. doi: 10.1049/el.2015.2291. DOI

Fruhman G., Gavard J.A., Mccormick K., Wilson-Griffin J., Amon E., Gross G.A. Standard External Doppler Fetal Heart Tracings versus External Fetal Electrocardiogram in Very Preterm Gestation: A Pilot Study. Am. J. Perinatol. Rep. 2016;6:e378–e383. PubMed PMC

Ahmadieh H., Asl B. Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems. Comput. Methods Progr. Biomed. 2017;142:101–108. doi: 10.1016/j.cmpb.2017.02.009. PubMed DOI

Redif S. Fetal electrocardiogram estimation using polynomial eigenvalue decomposition. Turk. J. Electr. Eng. Comput. Sci. 2016;24:2483–2497. doi: 10.3906/elk-1401-19. DOI

Fajkus M., Nedoma J., Martinek R., Vasinek V., Nazeran H., Siska P. A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring. Sensors. 2017;17:111. doi: 10.3390/s17010111. PubMed DOI PMC

Martinek R., Nedoma J., Fajkus M., Kahankova R., Konecny J., Janku P., Kepak S., Bilik P., Nazeran H. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring. Sensors. 2017;17:890. doi: 10.3390/s17040890. PubMed DOI PMC

Marossero D., Erdogmus D., Euliano N., Principe J., Hild K.E. Independent Components Analysis for Fetal Electrocardiogram Extraction: A Case for the Data Efficient Mermaid Algorithm. IEEE; Toulouse, France: 2003. pp. 399–408.

Jezewski J., Horoba K., Roj D., Wrobel J., Kupka T., Matonia A. Evaluating the fetal heart rate baseline estimation algorithms by their influence on detection of clinically important patterns. Biocybern. Biomed. Eng. 2016;36:562–573. doi: 10.1016/j.bbe.2016.06.003. DOI

Jezewski J., Wrobel J., Matonia A., Horoba K., Martinek R., Kupka T., Jezewski M. Is abdominal fetal electrocardiography an alternative to Doppler ultrasound for FHR variability evaluation? Front. Physiol. 2017;8:305. doi: 10.3389/fphys.2017.00305. PubMed DOI PMC

Hoyer D., Zebrowski J., Cysarz D., Goncalves H., Pytlik A., Amorim-Costa C., Bernardes J., Ayres-de Campos D., Witte O., Schleusner E., et al. Monitoring fetal maturation-objectives, techniques and indices of autonomic function. Physiol. Meas. 2017;38:R61–R88. doi: 10.1088/1361-6579/aa5fca. PubMed DOI PMC

Behar J., Zhu T., Oster J., Niksch A., Mah D., Chun T., Greenberg J., Tanner C., Harrop J., Sameni R., et al. Evaluation of the fetal QT interval using non-invasive fetal ECG technology. Physiol. Meas. 2016;37:1392–1403. doi: 10.1088/0967-3334/37/9/1392. PubMed DOI

Khandoker A.H., Marzbanrad F., Voss A., Schulz S., Kimura Y., Endo M., Palaniswami M. Analysis of maternal-fetal heart rate coupling directions with partial directed coherence. Biomed. Signal Process. Control. 2016;30:25–30. doi: 10.1016/j.bspc.2016.06.010. DOI

Schreiber T., Kaplan D. Signal separation by nonlinear projections: The fetal electrocardiogram. Phys. Rev. E. 1996;53:R4326–R4329. doi: 10.1103/PhysRevE.53.R4326. PubMed DOI

Richter M., Schreiber T., Kaplan D. Fetal ECG extraction with nonlinear state-space projections. IEEE Trans. Biomed. Eng. 1998;45:133–137. doi: 10.1109/10.650369. PubMed DOI

Burattini L., Agostinelli A., Grillo M., Biagini A., Giuliani C., Burattini L., Fioretti S., Di Nardo F., Giannubilo S., Ciavattini A. Noninvasive Fetal Electrocardiography: An Overview of the Signal Electrophysiological Meaning, Recording Procedures, and Processing Techniques. Ann. Noninvasive Electrocardiol. 2015;20:303–313. PubMed PMC

Agostinelli A., Sbrollini A., Burattini L., Fioretti S., Di Nardo F., Burattini L. Noninvasive Fetal Electrocardiography Part II: Segmented-Beat Modulation Method for Signal Denoising. Open Biomed. Eng. J. 2017;11:25–35. doi: 10.2174/1874120701711010025. PubMed DOI PMC

Martinek R., Kahankova R., Skutova H., Koudelka P., Zidek J., Koziorek J. Adaptive Signal Processing Techniques for Extracting Abdominal Fetal Electrocardiogram. Institute of Electrical and Electronics Engineers Inc.; Prague, Czech Republic: 2016. pp. 1–6.

Martinek R., Zidek J. A system for improving the diagnostic quality of fetal electrocardiogram. Prz. Elektrotech. 2012;88:164–173.

Martinek R., Zidek J. Refining the diagnostic quality of the abdominal fetal electrocardiogram using the techniques of artificial intelligence. Prz. Elektrotechn. 2012;88:155–160.

Martinek R., Skutova H., Kahankova R., Koudelka P., Bilik P., Koziorek J. Fetal ECG Extraction Based on Adaptive Neuro-Fuzzy Interference System. Institute of Electrical and Electronics Engineers Inc.; Prague, Czech Republic: 2016.

Martinek R., Kahankova R., Skukova H., Konecny J., Bilik P., Zidek J., Nazeran H. Advanced Biosignal Processing and Diagnostic Methods. InTech; Rijeka, Croatia: 2016. Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography.

Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P., Mark R., Mietus J., Moody G., Peng C., Stanley H. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:E215–E220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI

Jezewski J., Matonia A., Kupka T., Roj D., Czabanski R. Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Eng. 2012;57:383–394. doi: 10.1515/bmt-2011-0130. PubMed DOI

Matonia A., Jezewski J., Kupka T., Horoba K., Wrobel J., Gacek A. The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability. Med. Biol. Eng. Comput. 2006;44:393–403. doi: 10.1007/s11517-006-0054-0. PubMed DOI

Kotas M., Jezewski J., Horoba K., Matonia A. Application of spatio-temporal filtering to fetal electrocardiogram enhancement. Comput. Methods Progr. Biomed. 2011;104:1–9. doi: 10.1016/j.cmpb.2010.07.004. PubMed DOI

Kotas M., Jezewski J., Matonia A., Kupka T. Towards noise immune detection of fetal QRS complexes. Comput. Methods Progr. Biomed. 2010;97:241–256. doi: 10.1016/j.cmpb.2009.09.005. PubMed DOI

Andreotti F., Behar J., Zaunseder S., Oster J., Clifford G. An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms. Physiol. Meas. 2016;37:627–648. doi: 10.1088/0967-3334/37/5/627. PubMed DOI

Sameni R., Clifford G., Jutten C., Shamsollahi M. Multichannel ECG and noise modeling: Application to maternal and fetal ECG signals. Eurasip J. Adv. Signal Process. 2007;2007 doi: 10.1155/2007/43407. DOI

Almasi A., Shamsollahi M., Senhadji L. A Dynamical Model for Generating Synthetic Phonocardiogram Signals. IEEE; Boston, MA, USA: 2011. pp. 5686–5689. PubMed PMC

Sayadi O., Shamsollahi M., Clifford G. Synthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model. Physiol. Meas. 2010;31:1309–1329. doi: 10.1088/0967-3334/31/10/002. PubMed DOI PMC

Vaseghi S.V. Advanced Signal Processing and Digital Noise Reduction. John Wiley & Sons; New York City, NY, USA: 2006.

Haykin S. Adaptive Filter Theory. 4th ed. Pearson Education; New Delhi, India: 2008.

Uncini A. Fundamentals of Adaptive Signal Processing. Springer; New York City, NY, USA: 2015.

Ingle V.K., Proakis J.G. Digital Signal Processing Using MATLAB. 3rd ed. Cengage Learning; Stamford, CT, USA: 2012.

Benesty J., Huang Y. Adaptive Signal Processing. 1st ed. Springer; Berlin, Germany: 2003.

Farhang-Boroujeny B. Adaptive Filters. 2nd ed. John Wiley & Sons Ltd.; New York City, NY, USA: 2013.

Smith S.W. Digital Signal Processing. 1st ed. Newnes; Boston, MA, USA: 2003.

McSharry P., Clifford G., Tarassenko L., Smith L. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biom. Eng. 2003;50:289–294. doi: 10.1109/TBME.2003.808805. PubMed DOI

Behar J. Ph.D. Thesis. University of Oxford; Oxford, UK: 2014. Extraction of Clinical Information From the Non-Invasive Fetal Electrocardio-Gram.

Fuchs T., Grobelak K., Pomorski M., Zimmer M. Fetal heart rate monitoring using maternal abdominal surface electrodes in third trimester: Can we obtain additional information other than CTG trace? Adv. Clin. Exp. Med. 2016;25:309–316. doi: 10.17219/acem/60842. PubMed DOI

Dodd K., Elm K., Smith S. Comparison of the QRS Complex, ST-Segment, and T-Wave among Patients with Left Bundle Branch Block with and without Acute Myocardial Infarction. J. Emerg. Med. 2016;51:1–8. doi: 10.1016/j.jemermed.2016.02.029. PubMed DOI

Rei M., Tavares S., Pinto P., Machado A., Monteiro S., Costa A., Costa-Santos C., Bernardes J., Ayres-De-Campos D. Interobserver agreement in CTG interpretation using the 2015 FIGO guidelines for intrapartum fetal monitoring. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016;205:27–31. doi: 10.1016/j.ejogrb.2016.08.017. PubMed DOI

Ayres-De-Campos D., Spong C., Chandraharan E. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 2015;131:13–24. doi: 10.1016/j.ijgo.2015.06.020. PubMed DOI

Ma Y., Xiao Y., Wei G., Sun J. Fetal ECG Extraction Using Adaptive Functional Link Artificial Neural Network; Proceedings of Signal and Information Processing Association Annual Summit and Conference (APSIPA); Siem Reap, Cambodia. 9–12 December 2014.

Martinez M., Calpe J., Soria E., Guerrero J., Camps G., Gómez L. Methods to Evaluate the Performance of Fetal Electrocardiogram Extraction Algorithms. IEEE; Rotterdam, The Netherlands: 2001. pp. 253–256.

Agostinelli A., Marcantoni I., Moretti E., Sbrollini A., Fioretti S., Di Nardo F., Burattini L. Noninvasive Fetal Electrocardiography Part I: Pan-Tompkins’ Algorithm Adaptation to Fetal R-peak Identification. Open Biomed. Eng. J. 2017;11:17–24. doi: 10.2174/1874120701711010017. PubMed DOI PMC

Martinek R., Kelnar M., Koudelka P., Vanus J., Bilik P., Janku P., Nazeran H., Zidek J. Enhanced processing and analysis of multi-channel non-invasive abdominal foetal ECG signals during labor and delivery. Electron. Lett. 2015;51:1744–1746. doi: 10.1049/el.2015.2222. DOI

Vullings R., Peters C.H.L., Mischi M., Oei S.G., Bergmans J.W.M. Fetal Movement Quantification by Fetal Vectorcardiography: A Preliminary Study; Proceesdings of the 30th Annual International IEEE EMBS Conference; Vancouver, BC, Canada. 20–24 August 2008; pp. 1056–1059. PubMed

Vullings R., De Vries B., Bergmans J.W. An adaptive Kalman filter for ECG signal enhancement. IEEE Trans. Biomed. Eng. 2011;58:1094–1103. doi: 10.1109/TBME.2010.2099229. PubMed DOI

Vullings R., Mischi M., Oei S.G., Bergmans J.W. Novel Bayesian vectorcardiographic loop alignment for improved monitoring of ECG and fetal movement. IEEE Trans. Biomed. Eng. 2013;60:1580–1588. doi: 10.1109/TBME.2013.2238938. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...