A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction

. 2021 ; 16 (8) : e0256154. [epub] 20210813

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34388227

Non-invasive fetal electrocardiography appears to be one of the most promising fetal monitoring techniques during pregnancy and delivery nowadays. This method is based on recording electrical potentials produced by the fetal heart from the surface of the maternal abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are other interference signals in the abdominal recording that need to be filtered. The biggest challenge in designing filtration methods is the suppression of the maternal electrocardiographic signal. This study focuses on the extraction of fetal electrocardiographic signal from abdominal recordings using a combination of independent component analysis, recursive least squares, and ensemble empirical mode decomposition. The method was tested on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was performed by the assessment of the accuracy of fetal QRS complexes detection and the quality of fetal heart rate determination. The effectiveness of the method was measured by means of the statistical parameters as accuracy, sensitivity, positive predictive value, and F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database, accuracy higher than 80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75% [95% confidence interval: 91.19-93.88%], sensitivity 95.09% [95% confidence interval: 93.68-96.03%], positive predictive value 96.36% [95% confidence interval: 95.05-97.17%] and F1-score 95.69% [95% confidence interval: 94.83-96.35%]. When testing on the Physionet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25 recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44-81.85%], sensitivity 81.79% [95% confidence interval: 76.59-85.43%], positive predictive value 87.16% [95% confidence interval: 81.95-90.35%] and F1-score 84.08% [95% confidence interval: 80.75-86.64%]. Moreover, the non-invasive ST segment analysis was carried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total of 12 records (mean values μ < 0.1 and values of ±1.96σ < 0.1).

Zobrazit více v PubMed

Martinek R, Kahankova R, Nazeran H, Konecny J, Jezewski J, Janku P, et al.. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms. Sensors. 2017;17(5):1154. doi: 10.3390/s17051154 PubMed DOI PMC

Abdulhay EW, Oweis RJ, Alhaddad AM, Sublaban FN, Radwan MA, Almasaeed HM. Monitoring Techniques. Biomedical Science. 2014;2(3):53–67.

Sameni. A Review of Fetal ECG Signal Processing Issues and Promising Directions. The Open Pacing, Electrophysiology & Therapy Journal. 2010; doi: 10.2174/1876536X01003010004 PubMed DOI PMC

Mubarak QA, Akram MU, Shaukat A, Hussain F, Khawaja SG, Butt WH. Analysis of PCG Signals Using Quality Assessment and Homomorphic Filters for Localization and Classification of Heart Sounds. Computer Methods and Programs in Biomedicine. 2018;164:143–157. doi: 10.1016/j.cmpb.2018.07.006 PubMed DOI

Kahankova R, Martinek R, Jaros R, Behbehani K, Matonia A, Jezewski M, et al.. A Review of Signal Processing Techniques for Non-Invasive Fetal Electrocardiography. IEEE Reviews in Biomedical Engineering. 2020;13:51–73. doi: 10.1109/RBME.2019.2938061 PubMed DOI

Strasburger JF, Cheulkar B, Wakai RT. Magnetocardiography for Fetal Arrhythmias. Heart Rhythm. 2008;5(7):1073–1076. doi: 10.1016/j.hrthm.2008.02.035 PubMed DOI PMC

Czabanski R, Jezewski M, Wrobel J, Horoba K, Jezewski J. A Neuro-Fuzzy Approach to the Classification of Fetal Cardiotocograms. In: Magjarevic R, Nagel JH, Katashev A, Dekhtyar Y, Spigulis J, editors. 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics. vol. 20. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 446–449.

Wrobel J, Roj D, Jezewski J, Horoba K, Kupka T, Jezewski M. Evaluation of the Robustness of Fetal Heart Rate Variability Measures to Low Signal Quality. Journal of Medical Imaging and Health Informatics. 2015;5(6):1311–1318. doi: 10.1166/jmihi.2015.1534 DOI

Williams RL, Hawes WE. Cesarean Section, Fetal Monitoring, and Perinatal Mortality in California. American Journal of Public Health. 1979;69(9):864–870. doi: 10.2105/ajph.69.9.864 PubMed DOI PMC

Ţarălungă DD, Ungureanu GM, Gussi I, Strungaru R, Wolf W. Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics. Computational and Mathematical Methods in Medicine. 2014;2014:1–15. doi: 10.1155/2014/239060 PubMed DOI PMC

Jezewski M, Czabanski R, Horoba K, Leski J. Clustering with Pairs of Prototypes to Support Automated Assessment of the Fetal State. Applied Artificial Intelligence. 2016;30(6):572–589. doi: 10.1080/08839514.2016.1193718 DOI

Jezewski M, Czabanski R, Leski J. An Attempt to Optimize the Cardiotocographic Signal Feature Set for Fetal State Assessment. Journal of Medical Imaging and Health Informatics. 2015;5(6):1364–1373. doi: 10.1166/jmihi.2015.1540 DOI

Jezewski M, Czabanski R, Leski JM, Jezewski J. Fuzzy Classifier Based on Clustering with Pairs of ϵ-Hyperballs and Its Application to Support Fetal State Assessment. Expert Systems with Applications. 2019;118:109–126. doi: 10.1016/j.eswa.2018.09.030 DOI

Euliano TY, Nguyen MT, Darmanjian S, McGorray SP, Euliano N, Onkala A, et al.. Monitoring Uterine Activity during Labor: A Comparison of 3 Methods. American Journal of Obstetrics and Gynecology. 2013;208(1):66.e1–66.e6. doi: 10.1016/j.ajog.2012.10.873 PubMed DOI PMC

Sartwelle TP. Electronic Fetal Monitoring: A Bridge Too Far. Journal of Legal Medicine. 2012;33(3):313–379. doi: 10.1080/01947648.2012.714321 PubMed DOI

Chen HY, Chauhan SP, Ananth CV, Vintzileos AM, Abuhamad AZ. Electronic Fetal Heart Rate Monitoring and Its Relationship to Neonatal and Infant Mortality in the United States. American Journal of Obstetrics and Gynecology. 2011;204(6):491.e1–491.e10. doi: 10.1016/j.ajog.2011.04.024 PubMed DOI

Sandall J, Tribe RM, Avery L, Mola G, Visser GH, Homer CS, et al.. Short-Term and Long-Term Effects of Caesarean Section on the Health of Women and Children. The Lancet. 2018;392(10155):1349–1357. doi: 10.1016/S0140-6736(18)31930-5 PubMed DOI

Hasan MA, Reaz MBI, Ibrahimy MI, Hussain MS, Uddin J. Detection and Processing Techniques of FECG Signal for Fetal Monitoring. Biological Procedures Online. 2009;11(1):263–295. doi: 10.1007/s12575-009-9006-z PubMed DOI PMC

Jezewski J, Matonia A, Kupka T, Roj D, Czabanski R. Determination of Fetal Heart Rate from Abdominal Signals: Evaluation of Beat-to-Beat Accuracy in Relation to the Direct Fetal Electrocardiogram. Biomedizinische Technik/Biomedical Engineering. 2012;57(5). doi: 10.1515/bmt-2011-0130 PubMed DOI

Marchon N, Naik G, Pai R. ECG Electrode Configuration to Extract Real Time FECG Signals. Procedia Computer Science. 2018;125:501–508. doi: 10.1016/j.procs.2017.12.065 DOI

Jezewski J, Horoba K, Matonia A, Gacek A, Bernys M. A New Approach to Cardiotocographic Fetal Monitoring Based on Analysis of Bioelectrical Signals. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439). Cancun, Mexico: IEEE; 2003. p. 3145–3148.

Matonia A, Jezewski J, Horoba K, Gacek A, Labaj P. The Maternal ECG Suppression Algorithm for Efficient Extraction of the Fetal ECG from Abdominal Signal. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. New York, NY: IEEE; 2006. p. 3106–3109. PubMed

Clifford GD, Silva I, Behar J, Moody GB. Non-Invasive Fetal ECG Analysis. Physiological Measurement. 2014;35(8):1521–1536. doi: 10.1088/0967-3334/35/8/1521 PubMed DOI PMC

Jaros R, Martinek R, Kahankova R. Non-Adaptive Methods for Fetal ECG Signal Processing: A Review and Appraisal. Sensors. 2018;18(11):3648. doi: 10.3390/s18113648 PubMed DOI PMC

Yuan L, Zhou Z, Yuan Y, Wu S. An Improved FastICA Method for Fetal ECG Extraction. Computational and Mathematical Methods in Medicine. 2018;2018:1–7. doi: 10.1155/2018/7061456 PubMed DOI PMC

Kotas M, Giraldo J, Contreras-Ortiz SH, Lasprilla GIB. Fetal ECG Extraction Using Independent Component Analysis by Jade Approach. In: Brieva J, García JD, Lepore N, Romero E, editors. 13th International Conference on Medical Information Processing and Analysis. San Andres Island, Colombia: SPIE; 2017. p. 55.

Martinek R, Kahankova R, Jezewski J, Jaros R, Mohylova J, Fajkus M, et al.. Comparative Effectiveness of ICA and PCA in Extraction of Fetal ECG From Abdominal Signals: Toward Non-Invasive Fetal Monitoring. Frontiers in Physiology. 2018;9:648. doi: 10.3389/fphys.2018.00648 PubMed DOI PMC

Petrolis R, Gintautas V, Krisciukaitis A. Multistage Principal Component Analysis Based Method for Abdominal ECG Decomposition. Physiological Measurement. 2015;36(2):329–340. doi: 10.1088/0967-3334/36/2/329 PubMed DOI

Hassanpour H, Parsaei A. Fetal ECG Extraction Using Wavelet Transform. In: 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA’06). Sydney, NSW: IEEE; 2006. p. 179–179.

Desai KD, Sankhe MS. A Real-Time Fetal ECG Feature Extraction Using Multiscale Discrete Wavelet Transform. In: 2012 5th International Conference on BioMedical Engineering and Informatics. Chongqing, China: IEEE; 2012. p. 407–412.

Ghobadi Azbari P, Abdolghaffar M, Mohaqeqi S, Pooyan M, Ahmadian A, Ghanbarzadeh Gashti N. A Novel Approach to the Extraction of Fetal Electrocardiogram Based on Empirical Mode Decomposition and Correlation Analysis. Australasian Physical & Engineering Sciences in Medicine. 2017;40(3):565–574. doi: 10.1007/s13246-017-0560-4 PubMed DOI

Liu G, Luan Y. An Adaptive Integrated Algorithm for Noninvasive Fetal ECG Separation and Noise Reduction Based on ICA-EEMD-WS. Medical & Biological Engineering & Computing. 2015;53(11):1113–1127. doi: 10.1007/s11517-015-1389-1 PubMed DOI

Swarnalath R, Prasad DV. A Novel Technique for Extraction of FECG Using Multi Stage Adaptive Filtering. Journal of Applied Sciences. 2010;10(4):319–324. doi: 10.3923/jas.2010.319.324 DOI

Nasiri M, Faez K. Extracting Fetal Electrocardiogram Signal Using ANFIS Trained by Genetic Algorithm. In: 2012 International Conference on Biomedical Engineering (ICoBE). Penang, Malaysia: IEEE; 2012. p. 197–202.

Assaleh K. Extraction of Fetal Electrocardiogram Using Adaptive Neuro-Fuzzy Inference Systems. IEEE Transactions on Biomedical Engineering. 2007;54(1):59–68. doi: 10.1109/TBME.2006.883728 PubMed DOI

Niknazar M, Rivet B, Jutten C. Fetal ECG Extraction by Extended State Kalman Filtering Based on Single-Channel Recordings. IEEE Transactions on Biomedical Engineering. 2013;60(5):1345–1352. doi: 10.1109/TBME.2012.2234456 PubMed DOI

Ping Gao, Ee-Chien Chang, Wyse L. Blind Separation of Fetal ECG from Single Mixture Using SVD and ICA. In: Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint. vol. 3. Singapore: IEEE; 2003. p. 1418–1422.

Ayat M, Assaleh K, Nashash H. Fetal ECG Extraction from a Single Abdominal ECG Signal Using SVD and Polynomial Classifiers. In: 2008 IEEE Workshop on Machine Learning for Signal Processing. Cancun, Mexico: IEEE; 2008. p. 250–254.

Panigrahy D, Sahu PK. Extraction of Fetal Electrocardiogram (ECG) by Extended State Kalman Filtering and Adaptive Neuro-Fuzzy Inference System (ANFIS) Based on Single Channel Abdominal Recording. Sadhana Academy Proceedings in Engineering Sciences. 2015;40(4):1091–1104.

Sameni R, Jutten C, Shamsollahi MB. Multichannel Electrocardiogram Decomposition Using Periodic Component Analysis. IEEE Transactions on Biomedical Engineering. 2008;55(8):1935–1940. doi: 10.1109/TBME.2008.919714 PubMed DOI

Ionescu V. Fetal ECG Extraction from Multichannel Abdominal ECG Recordings for Health Monitoring During Labor. Procedia Technology. 2016;22:682–689. doi: 10.1016/j.protcy.2016.01.143 DOI

Billeci Lucia, Varanini Maurizio. A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads. Sensors. 2017;17(5):1135. doi: 10.3390/s17051135 PubMed DOI PMC

Lukoševičius M, Marozas V. Noninvasive Fetal QRS Detection Using an Echo State Network and Dynamic Programming. Physiological Measurement. 2014;35(8):1685–1697. doi: 10.1088/0967-3334/35/7/1685 PubMed DOI

Hasan MA, Reaz MBI, Ibrahimy MI. Fetal Electrocardiogram Extraction and R-Peak Detection for Fetal Heart Rate Monitoring Using Artificial Neural Network and Correlation. In: The 2011 International Joint Conference on Neural Networks. San Jose, CA, USA: IEEE; 2011. p. 15–20.

Li C, Fang B, Li H, Wang P. A Novel Method of FECG Extraction Combined Self-Correlation Analysis with ICA. In: 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN). Beijing, China: IEEE; 2016. p. 107–111.

Jaros R, Martinek R, Kahankova R, Koziorek J. Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram. IEEE Access. 2019;7:131758–131784. doi: 10.1109/ACCESS.2019.2933717 DOI

Barnova K, Martinek R, Jaros R, Kahankova R. Hybrid Methods Based on Empirical Mode Decomposition for Non-Invasive Fetal Heart Rate Monitoring. IEEE Access. 2020;8:51200–51218. doi: 10.1109/ACCESS.2020.2980254 DOI

Su PC, Miller S, Idriss S, Barker P, Wu HT. Recovery of the Fetal Electrocardiogram for Morphological Analysis from Two Trans-Abdominal Channels via Optimal Shrinkage. Physiological Measurement. 2019;40(11):115005. doi: 10.1088/1361-6579/ab4b13 PubMed DOI

Behar JA, Bonnemains L, Shulgin V, Oster J, Ostras O, Lakhno I. Noninvasive Fetal Electrocardiography for the Detection of Fetal Arrhythmias. Prenatal Diagnosis. 2019;39(3):178–187. doi: 10.1002/pd.5412 PubMed DOI

Andreotti F, Behar J, Zaunseder S, Oster J, Clifford GD. An Open-Source Framework for Stress-Testing Non-Invasive Foetal ECG Extraction Algorithms. Physiological Measurement. 2016;37(5):627–648. doi: 10.1088/0967-3334/37/5/627 PubMed DOI

Behar J, Andreotti F, Oster J, Clifford GD. A Bayesian Filtering Framework for Accurate Extracting of the Non-Invasive FECG Morphology. In: Computing in Cardiology 2014. IEEE; 2014. p. 53–56.

Clifford G, Sameni R, Ward J, Robinson J, Wolfberg AJ. Clinically Accurate Fetal ECG Parameters Acquired from Maternal Abdominal Sensors. American Journal of Obstetrics and Gynecology. 2011;205(1):47.e1–47.e5. doi: 10.1016/j.ajog.2011.02.066 PubMed DOI PMC

Karvounis EC, Tsipouras MG, Papaloukas C, Tsalikakis DG, Naka KK, Fotiadis DI. A Non-Invasive Methodology for Fetal Monitoring during Pregnancy. Methods of Information in Medicine. 2010;49(03):238–253. doi: 10.3414/ME09-01-0041 PubMed DOI

Podziemski P, Gieraltowski J. Fetal Heart Rate Discovery: Algorithm for Detection of Fetal Heart Rate from Noisy, Noninvasive Fetal ECG Recordings. In: Computing in Cardiology 2013. IEEE; 2013. p. 333–336.

Widatalla N, Kasahara Y, Kimura Y, Khandoker A. Model Based Estimation of QT Intervals in Non-Invasive Fetal ECG Signals. PLOS ONE. 2020;15(5):e0232769. doi: 10.1371/journal.pone.0232769 PubMed DOI PMC

Chandraharan E. Handbook of CTG Interpretation: From Patterns to Physiology. Cambridge University Press; 2017.

Manorost P, Theera-Umpon N, Auephanwiriyakul S. Fetal Electrocardiogram Extraction by Independent Component Analysis. In: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). Penang: IEEE; 2017. p. 220–225.

M A J, J J. Independent Component Analysis in ECG Signal Processing. In: Millis R, editor. Advances in Electrocardiograms—Methods and Analysis. InTech; 2012.

Alkhodari M, Rashed A, Alex M, Yeh NS. Fetal ECG Extraction Using Independent Components and Characteristics Matching. In: 2018 International Conference on Signal Processing and Information Security (ICSPIS). DUBAI, United Arab Emirates: IEEE; 2018. p. 1–4.

Hong Li, Yunlian Sun. The Study and Test of ICA Algorithms. In: Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing, 2005. vol. 1. Wuhan, China: IEEE; 2005. p. 602–605.

Chen LY, Lu CJ. An Improved Independent Component Analysis Algorithm Based on Artificial Immune System. International Journal of Machine Learning and Computing. 2013; p. 93–97. doi: 10.7763/IJMLC.2013.V3.279 DOI

Phegade M, Mukherji P. ICA Based ECG Signal Denoising. In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Mysore: IEEE; 2013. p. 1675–1680.

Tharwat A. Independent Component Analysis: An Introduction. Applied Computing and Informatics. 2020;ahead-of-print(ahead-of-print).

Diniz PSR. Adaptive Filtering: Algorithms and Practical Implementation. 4th ed. New York: Springer; 2013.

Mugdha AC, Rawnaque FS, Ahmed MU. A Study of Recursive Least Squares (RLS) Adaptive Filter Algorithm in Noise Removal from ECG Signals. In: 2015 International Conference on Informatics, Electronics & Vision (ICIEV). Fukuoka, Japan: IEEE; 2015. p. 1–6.

Xing G, Zhang Y. Analysis and Comparison of RLS Adaptive Filter in Signal De-Noising. In: 2011 International Conference on Electrical and Control Engineering. Yichang, China: IEEE; 2011. p. 5754–5758.

Ghosh K P, Poonia D. Comparison of Some EMD Based Technique for Baseline Wander Correction in Fetal ECG Signa. International Journal of Computer Applications. 2015;116(15):48–52. doi: 10.5120/20416-2836 DOI

Ladrova M, Sidikova M, Martinek R, Jaros R, Bilik P. Elimination of Interference in Phonocardiogram Signal Based on Wavelet Transform and Empirical Mode Decomposition. IFAC-PapersOnLine. 2019;52(27):440–445. doi: 10.1016/j.ifacol.2019.12.703 DOI

Chang KM. Ensemble Empirical Mode Decomposition for High Frequency ECG Noise Reduction. Biomedizinische Technik/Biomedical Engineering. 2010;55(4):193–201. doi: 10.1515/bmt.2010.030 PubMed DOI

Gaci S. A New Ensemble Empirical Mode Decomposition (EEMD) Denoising Method for Seismic Signals. Energy Procedia. 2016;97:84–91. doi: 10.1016/j.egypro.2016.10.026 DOI

Du SC, Liu T, Huang DL, Li GL. An Optimal Ensemble Empirical Mode Decomposition Method for Vibration Signal Decomposition. Journal of Vibration and Acoustics. 2017;139(3):031003. doi: 10.1115/1.4035480 DOI

Sarafan S, Le T, Naderi AM, Nguyen QD, Kuo BTY, Ghirmai T, et al.. Investigation of Methods to Extract Fetal Electrocardiogram from the Mother’s Abdominal Signal in Practical Scenarios. Technologies. 2020;8(2):33. doi: 10.3390/technologies8020033 PubMed DOI PMC

Hyvärinen A, Oja E. Independent Component Analysis: Algorithms and Applications. Neural Networks. 2000;13(4-5):411–430. doi: 10.1016/S0893-6080(00)00026-5 PubMed DOI

Varanini M, Tartarisco G, Billeci L, Macerata A, Pioggia G, Balocchi R. An Efficient Unsupervised Fetal QRS Complex Detection from Abdominal Maternal ECG. Physiological Measurement. 2014;35(8):1607–1619. doi: 10.1088/0967-3334/35/8/1607 PubMed DOI

Kahankova R, Martinek R, Bilik P. Fetal ECG Extraction from Abdominal ECG Using RLS Based Adaptive Algorithms. In: 2017 18th International Carpathian Control Conference (ICCC). Sinaia, Romania: IEEE; 2017. p. 337–342.

Behar J, Johnson A, Clifford GD, Oster J. A Comparison of Single Channel Fetal ECG Extraction Methods. Annals of Biomedical Engineering. 2014;42(6):1340–1353. doi: 10.1007/s10439-014-0993-9 PubMed DOI

Taralunga DD, Gussi I, Strungaru R. A New Method for Fetal Electrocardiogram Denoising Using Blind Source Separation and Empirical Mode Decomposition. Revue Roumaine des Sci Techn, serie Électrotechnique et Énergetique. 2016;61(1):94–98.

Ghobadi Azbari P, Mohaqeqi S, Ghanbarzadeh Gashti N, Mikaili M. Introducing a Combined Approach of Empirical Mode Decomposition and PCA Methods for Maternal and Fetal ECG Signal Processing. The Journal of Maternal-Fetal & Neonatal Medicine. 2016;29(19):3104–3109. doi: 10.3109/14767058.2015.1114089 PubMed DOI

Al-Angari HM, Kimura Y, Hadjileontiadis LJ, Khandoker AH. A Hybrid EMD-Kurtosis Method for Estimating Fetal Heart Rate from Continuous Doppler Signals. Frontiers in Physiology. 2017;8:641. doi: 10.3389/fphys.2017.00641 PubMed DOI PMC

Wu Z, Huang NE. ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD. Advances in Adaptive Data Analysis. 2009;01(01):1–41. doi: 10.1142/S1793536909000047 DOI

Ren Y, Suganthan PN, Srikanth N. A Comparative Study of Empirical Mode Decomposition-Based Short-Term Wind Speed Forecasting Methods. IEEE Transactions on Sustainable Energy. 2015;6(1):236–244. doi: 10.1109/TSTE.2014.2365580 DOI

Matonia A, Jezewski J, Kupka T, Jezewski M, Horoba K, Wrobel J, et al.. Fetal Electrocardiograms, Direct and Abdominal with Reference Heart Beats Annotations. 2020; doi: 10.6084/m9.figshare.c.4740794.v1 PubMed DOI PMC

Matonia A, Jezewski J, Kupka T, Jezewski M, Horoba K, Wrobel J, et al.. Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeat Annotations. Scientific Data. 2020;7(1):200. doi: 10.1038/s41597-020-0538-z PubMed DOI PMC

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al.. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101(23). doi: 10.1161/01.CIR.101.23.e215 PubMed DOI

Silva I, Behar J, Sameni R, Zhu T, Oster J, Clifford GD, et al. Noninvasive Fetal ECG: The PhysioNet/Computing in Cardiology Challenge 2013. In: Computing in Cardiology 2013. IEEE; 2013. p. 149–152. PubMed PMC

Martinek R, Kahankova R, Martin B, Nedoma J, Fajkus M. A Novel Modular Fetal ECG STAN and HRV Analysis: Towards Robust Hypoxia Detection. Technology and Health Care. 2019;27(3):257–287. doi: 10.3233/THC-181375 PubMed DOI

Martin Bland J, Altman D. STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT. The Lancet. 1986;327(8476):307–310. doi: 10.1016/S0140-6736(86)90837-8 PubMed DOI

Giavarina D. Understanding Bland Altman Analysis. Biochemia Medica. 2015;25(2):141–151. doi: 10.11613/BM.2015.015 PubMed DOI PMC

Kazmi T, Radfer F, Khan S. ST Analysis of the Fetal ECG, as an Adjunct to Fetal Heart Rate Monitoring in Labour: A Review. Oman Medical Journal. 2011;26(6):459–460. doi: 10.5001/omj.2011.118 PubMed DOI PMC

De Moor B, De Gersem P, De Schutter B, Favoreel W. DAISY: A Database for Identification of Systems. JOURNAL A. 1997;38:4–5.

Fotiadou E, van Laar JOEH, Oei SG, Vullings R. Enhancement of Low-Quality Fetal Electrocardiogram Based on Time-Sequenced Adaptive Filtering. Medical & Biological Engineering & Computing. 2018;56(12):2313–2323. doi: 10.1007/s11517-018-1862-8 PubMed DOI PMC

Lee K, Lee B. Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG. Sensors. 2016;16(7):1020. doi: 10.3390/s16071020 PubMed DOI PMC

Zeng Y, Liu S, Zhang J. Extraction of Fetal ECG Signal via Adaptive Noise Cancellation Approach. In: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai, China: IEEE; 2008. p. 2270–2273.

Raj CG, Harsha VS, Gowthami BS, Sunitha R. Virtual Instrumentation Based Fetal ECG Extraction. Procedia Computer Science. 2015;70:289–295. doi: 10.1016/j.procs.2015.10.093 DOI

de Lathauwer L, de Moor B, Vandewalle J. Fetal Electrocardiogram Extraction by Blind Source Subspace Separation. IEEE Transactions on Biomedical Engineering. 2000;47(5):567–572. doi: 10.1109/10.841326 PubMed DOI

Da Poian G, Bernardini R, Rinaldo R. Separation and Analysis of Fetal-ECG Signals From Compressed Sensed Abdominal ECG Recordings. IEEE Transactions on Biomedical Engineering. 2016;63(6):1269–1279. doi: 10.1109/TBME.2015.2493726 PubMed DOI

Castillo E, Morales DP, García A, Parrilla L, Ruiz VU, Álvarez-Bermejo JA. A Clustering-Based Method for Single-Channel Fetal Heart Rate Monitoring. PLOS ONE. 2018;13(6):e0199308. doi: 10.1371/journal.pone.0199308 PubMed DOI PMC

Su L, Wu HT. Extract Fetal ECG from Single-Lead Abdominal ECG by De-Shape Short Time Fourier Transform and Nonlocal Median. Frontiers in Applied Mathematics and Statistics. 2017;3. doi: 10.3389/fams.2017.00002 DOI

Gurve D, Krishnan S. Separation of Fetal-ECG From Single-Channel Abdominal ECG Using Activation Scaled Non-Negative Matrix Factorization. IEEE Journal of Biomedical and Health Informatics. 2020;24(3):669–680. doi: 10.1109/JBHI.2019.2920356 PubMed DOI

Panigrahy D, Sahu PK. Extraction of Fetal ECG Signal by an Improved Method Using Extended Kalman Smoother Framework from Single Channel Abdominal ECG Signal. Australasian Physical & Engineering Sciences in Medicine. 2017;40(1):191–207. doi: 10.1007/s13246-017-0527-5 PubMed DOI

Behar J, Andreotti F, Zaunseder S, Li Q, Oster J, Clifford GD. An ECG Simulator for Generating Maternal-Foetal Activity Mixtures on Abdominal ECG Recordings. Physiological Measurement. 2014;35(8):1537–1550. doi: 10.1088/0967-3334/35/8/1537 PubMed DOI

Marchon N, Naik G. Electrode Positioning for Monitoring Fetal ECG: A Review. In: 2015 International Conference on Information Processing (ICIP). Pune, India: IEEE; 2015. p. 5–10.

Rooijakkers MJ, Song S, Rabotti C, Oei SG, Bergmans JWM, Cantatore E, et al.. Influence of Electrode Placement on Signal Quality for Ambulatory Pregnancy Monitoring. Computational and Mathematical Methods in Medicine. 2014;2014:1–12. doi: 10.1155/2014/960980 PubMed DOI PMC

Orphanidou C. In: Quality Assessment for the Electrocardiogram (ECG). Cham: Springer International Publishing; 2018. p. 15–40.

Behar J, Oster J, Qiao Li, Clifford GD. ECG Signal Quality During Arrhythmia and Its Application to False Alarm Reduction. IEEE Transactions on Biomedical Engineering. 2013;60(6):1660–1666. doi: 10.1109/TBME.2013.2240452 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...