Is Abdominal Fetal Electrocardiography an Alternative to Doppler Ultrasound for FHR Variability Evaluation?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28559852
PubMed Central
PMC5432618
DOI
10.3389/fphys.2017.00305
Knihovny.cz E-zdroje
- Klíčová slova
- Doppler ultrasound, fetal electrocardiogram, fetal heart rate analysis, fetal outcome, fetal state assessment,
- Publikační typ
- časopisecké články MeSH
Great expectations are connected with application of indirect fetal electrocardiography (FECG), especially for home telemonitoring of pregnancy. Evaluation of fetal heart rate (FHR) variability, when determined from FECG, uses the same criteria as for FHR signal acquired classically-through ultrasound Doppler method (US). Therefore, the equivalence of those two methods has to be confirmed, both in terms of recognizing classical FHR patterns: baseline, accelerations/decelerations (A/D), long-term variability (LTV), as well as evaluating the FHR variability with beat-to-beat accuracy-short-term variability (STV). The research material consisted of recordings collected from 60 patients in physiological and complicated pregnancy. The FHR signals of at least 30 min duration were acquired dually, using two systems for fetal and maternal monitoring, based on US and FECG methods. Recordings were retrospectively divided into normal (41) and abnormal (19) fetal outcome. The complex process of data synchronization and validation was performed. Obtained low level of the signal loss (4.5% for US and 1.8% for FECG method) enabled to perform both direct comparison of FHR signals, as well as indirect one-by using clinically relevant parameters. Direct comparison showed that there is no measurement bias between the acquisition methods, whereas the mean absolute difference, important for both visual and computer-aided signal analysis, was equal to 1.2 bpm. Such low differences do not affect the visual assessment of the FHR signal. However, in the indirect comparison the inconsistencies of several percent were noted. This mainly affects the acceleration (7.8%) and particularly deceleration (54%) patterns. In the signals acquired using the electrocardiography the obtained STV and LTV indices have shown significant overestimation by 10 and 50% respectively. It also turned out, that ability of clinical parameters to distinguish between normal and abnormal groups do not depend on the acquisition method. The obtained results prove that the abdominal FECG, considered as an alternative to the ultrasound approach, does not change the interpretation of the FHR signal, which was confirmed during both visual assessment and automated analysis.
Institute of Electronics Silesian University of TechnologyGliwice Poland
Institute of Medical Technology and Equipment ITAMZabrze Poland
Zobrazit více v PubMed
Agostinelli A., Fioretti S., Di Nardo F., Burattini L. (2015a). Clinical Application of the Segmented-Beat Modulation Method for Fetal ECG Extraction, in Proceedings of the 12th International Workshop on Intelligent Solutions in Embedded Systems (WISES) eds Conti M., Orcioni S. (Ancona: IEEE Press; ), 35–40.
Agostinelli A., Grillo M., Biagini A., Giuliani C., Burattini L., Fioretti S. A. (2015b). Noninvasive fetal electrocardiography: an overview of the signal electrophysiological meaning, recording procedures, and processing techniques. Ann. Noninvas. Electro. 20, 303–313. 10.1111/anec.12259 PubMed DOI PMC
Almeida R., Goncalves H., Bernardes J., Rocha A. P. (2014). Fetal QRS detection and heart rate estimation: a wavelet-based approach. Physiol. Meas. 35, 1723–1735. 10.1088/0967-3334/35/8/1723 PubMed DOI
Almeida R., Goncalves H., Rocha A. P., Bernardes J. (2013). A wavelet-based method for assessing fetal cardiac rhythms from abdominal ECGs. Comput. Cardiol. 40, 289–292.
Behar J., Johnson A., Clifford G. D., Oster J. (2014). A comparison of single channel fetal ECG extraction methods. Ann. Biomed. Eng. 42, 1340–1353. 10.1007/s10439-014-0993-9 PubMed DOI
Castilloa E., Moralesa D. P., Botellab G., Garcíaa A., Parrillaa L., Palmaa A. J. (2013). Efficient wavelet-based ECG processing for single-lead FHR extraction. Digit. Signal Process. 23, 1897–1909. 10.1016/j.dsp.2013.07.010 DOI
Cesarelli M., Romano M., Bifulco P. (2009). Comparison of short term variability indexes in cardiotocographic foetal monitoring. Comput. Biol. Med. 39, 106–118. 10.1016/j.compbiomed.2008.11.010 PubMed DOI
Chudacek V., Spilka J., Bursa M., Janku P., Hruban L., Huptych M., et al. . (2014). Open access intrapartum CTG database. BMC Pregnancy Childbirth. 14:16. 10.1186/1471-2393-14-16 PubMed DOI PMC
Cohen W., Ommani S., Hassan S., Mirza F., Solomon M., Brown R. (2012). Accuracy and reliability of fetal heart rate monitoring using maternal abdominal surface electrodes. Acta Obstet. Gynecol. Scand. 91, 1306–1313. 10.1111/j.1600-0412.2012.01533.x PubMed DOI
Czabanski R., Jezewski J., Horoba K., Jezewski M. (2013). Fetal state assessment using fuzzy analysis of the fetal heart rate signals - agreement with the neonatal outcome. Biocybern. Biomed. Eng. 33, 145–155. 10.1016/j.bbe.2013.07.003 DOI
Czabanski R., Jezewski M., Wrobel J., Horoba K., Jezewski J. (2008). Neuro-fuzzy approach to the classification of fetal cardiotocograms, in Proceedings of the 14th Nordic Baltic Conference on Biomedical Engineering and Medical Physics, Vol. 20 (Riga: IFMBE Press; ), 446–449.
Desai K. D., Jadhav S. D., Sankhe M. S. (2013). Comparison and Quantification of Fetal Heart Rate Variability using Doppler Ultrasound and Direct Electrocardiography Acquisition Techniques, in Proceedings of the International Conference on Advances in Technology and Engineering ICATE (Mumbai: IEEE Press; ), 1–8.
Fuchs T. (2014). Values of T/QRS ratios measured during normal and post-term pregnancies. J Perinat. Med. 42, 349–357. 10.1515/jpm-2013-0181 PubMed DOI
Georgieva A., Papageorghiou A. T., Payne S. J., Moulden M., Redman C. W. G. (2014). Phase-rectified signal averaging for intrapartum electronic fetal heart rate monitoring is related to acidaemia at birth. Br. J Obstet. Gynaecol. 121, 889–894. 10.1111/1471-0528.12568 PubMed DOI
Georgieva A., Payne S. J., Moulden M., Redman C. W. G. (2012). Relation of fetal heart rate signals with unassignable baseline to poor neonatal state at birth. Med. Biol. Eng. Comput. 50, 717–725. 10.1007/s11517-012-0923-7 PubMed DOI
Goncalves H., Chaves J., Costa A., Ayres-de-Campos D., Bernardes J. (2015). Comparison of the effect of different sampling modes on computer analysis of cardiotocograms. Comput. Biol. Med. 64, 62–66. 10.1016/j.compbiomed.2015.06.011 PubMed DOI
Goncalves H., Costa A., Ayres-de-Campos D., Costa-Santos C., Rocha A. P., Bernardes J. (2013). Comparison of real beat-to-beat signals with commercially available 4 Hz sampling on the evaluation of foetal heart rate variability. Med. Biol. Eng. Comput. 51, 665–676. 10.1007/s11517-013-1036-7 PubMed DOI
Guerrero Martinez J. F., Martinez-Sober M., Bataller-Mompean M., Magdalena-Benedito J. R. (2006). New algorithm for fetal QRS detection in surface abdominal records. Comput. Cardiol. 33, 441–444.
Ibrahimy M. I., Firoz A., Mohd Ali M. A., Zahedi E. (2003). Real-time signal processing for fetal heart rate monitoring. IEEE Trans. Biomed. Eng. 50, 258–262. 10.1109/TBME.2002.807642 PubMed DOI
Jezewski J., Horoba K., Roj D., Wrobel J., Kupka T., Matonia A. (2016). Evaluating the fetal heart rate baseline estimation algorithms by their influence on detection of clinically important patterns. Biocybern. Biomed. Eng. 36, 562–573. 10.1016/j.bbe.2016.06.003 DOI
Jezewski J., Matonia A., Kupka T., Roj D., Czabanski R. (2012). Determination of the fetal heart rate from abdominal signals: evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Eng. 57, 383–394. 10.1515/bmt-2011-0130 PubMed DOI
Jezewski J., Roj D., Wrobel J., Horoba K. (2011). A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed. Eng. 10:92. 10.1186/1475-925x-10-92 PubMed DOI PMC
Jezewski J., Wrobel J., Horoba K. (2006). Comparison of Doppler ultrasound and direct electrocardiography acquisition techniques for quantification of fetal heart rate variability. IEEE Trans. Biomed. Eng. 53, 855–864. 10.1109/TBME.2005.863945 PubMed DOI
Jezewski J., Wrobel J., Horoba K., Gacek A., Sikora J. (2002). Fetal heart rate variability: clinical experts versus computerized system interpretation, in Proceedings of the 24th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Houston, TX: IEEE Press; ), 1617–1618. 10.1109/iembs.2002.1106566 DOI
Karvounis E. C., Tsipouras M. G., Fotiadis D. I., Naka K. K. (2007). An automated methodology for fetal heart rate extraction from the abdominal electrocardiogram. IEEE Trans Inf. Technol. B. 11, 628–638. 10.1109/TITB.2006.888698 PubMed DOI
Khalaf J., Moslem B., Bazzi O., Diab M. (2013). Fetal “ECG extraction from abdominal composite recordings - A preliminary study,” in Proceedings of the 2nd International Conference on Advances in Biomedical Engineering (ICABME). (Tripoli: IEEE Press; ), 133–136.
Khandoker A. H., Kimura Y., Ito T., Sato N., Okamura K., Palaniswami M. (2009). Antepartum non-invasive evaluation of opening and closing timings of the cardiac valves in fetal cardiac cycle. Med. Biol. Eng. Comput. 47, 1075–1082. 10.1007/s11517-009-0528-y PubMed DOI
Kimura Y., Sato N., Sugawara J., Velayo C., Hoshiai T., Nagase S., et al. (2012). Recent advances in fetal electrocardiography. Open. Med. Dev. J. 4, 7–12. 10.2174/1875181401204010007 DOI
Kolomeyets N. L., Roshchevskaya I. M. (2013). Models of Fetal ECG recorded on the pregnant woman's abdomen. Biophysics 58, 549–553. 10.1134/S0006350913040088 PubMed DOI
Kording F., Schoennagel B., Lund G., Ueberle F., Jung C., Adam G., et al. . (2015). Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: a pilot study. Magn. Reson. Med. 74, 1257–1265. 10.1002/mrm.25502 PubMed DOI
Kotas M. (2008). Combined application of independent component analysis and projective filtering to fetal ECG extraction. Biocybern. Biomed. Eng. 28, 75–93.
Kubo T., Inaba J., Shigemitsu S., Akatsuka T. (1987). Fetal heart variability indices and the accuracy of variability measurements. Am. J. Perinatol. 4 179–186. 10.1055/s-2007-999768 PubMed DOI
Lee C., Masek M., Lam C., Tan K. (2009). Towards higher accuracy and better noise-tolerance for fetal heart rate monitoring using doppler ultrasound, in Proceedings of the TENCON IEEE Region 10 Conference, 2009 (Singapore: IEEE Press; ), 1–6.
Liu G., Luan Y. (2015). An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS. Med. Biol. Eng. Comput. 53, 1113–1127. 10.1007/s11517-015-1389-1 PubMed DOI
Martinek R., Kelnar M., Koudelka P., Vanus J., Bilik P., Janku P., et al. (2015). Enhanced processing and analysis of multi-channel non-invasive abdominal foetal ECG signals during labor and delivery. Electron. Lett. 51, 1744–1746. 10.1049/el.2015.2222 DOI
Martinek R., Kelnar M., Koudelka P., Vanus J., Bilik P., Janku P., et al. . (2016). A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator. Physiol. Meas. 37, 238–256. 10.1088/0967-3334/37/2/238 PubMed DOI
Marzbanrad F., Kimura Y., Funamoto K., Sugibayashi R., Endo M., Ito T., et al. . (2014). Automated estimation of fetal cardiac timing events from doppler ultrasound signal using hybrid models. IEEE Trans. Inform. Technol. Biomed. 18, 1169–1177. 10.1109/jbhi.2013.2286155 PubMed DOI
Matonia A., Jezewski J., Kupka T., Horoba K., Wrobel J., Gacek A. (2006). The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability. Med. Biol. Eng. Comput. 44, 393–403. 10.1007/s11517-006-0054-0 PubMed DOI
Melillo P., Santoro D., Vadursi M. (2014). Detection and compensation of interchannel time offsets in indirect fetal ECG sensing. IEEE Sens. 14, 2327–2334. 10.1109/JSEN.2014.2309994 DOI
Poian Da G., Bernardini R., Rinaldo R. (2016). Separation and Analysis of fetal-ECG signals from compressed sensed abdominal ECG recordings. IEEE T Bio. Med. Eng. 63, 1269–279. 10.1109/TBME.2015.2493726 PubMed DOI
Reinhard J., Hayes-Gill B. R., Schiermeier S., Hatzmann W., Herrmann E., Heinrich T. M. (2012). Intrapartum signal quality with external fetal heart rate monitoring: a two way trial of external Doppler CTG ultrasound and the abdominal fetal electrocardiogram. Arch. Gynecol. Obstet. 286, 1103–1107. 10.1007/s00404-012-2413-4 PubMed DOI
Reinhard J., Hayes-Gill B. R., Yi Q., Hatzmann H., Schiermeier S. (2010). Comparison of non-invasive fetal electrocardiogram to Doppler cardiotocogram during the 1st stage of labor. J. Perinat. Med. 38, 179–185. 10.1515/jpm.2010.025 PubMed DOI
Romano M., Bifulco P., Ruffo M., Improta G., Clemente F., Cesarelli M. (2016a). Software for computerised analysis of cardiotocographic traces. Comput. Methods Programs Biomed. 124, 121–137. 10.1016/j.cmpb.2015.10.008 PubMed DOI
Romano M., Iuppariello L., Ponsiglione A. M., Improta G., Bifulco P., Cesarelli M. (2016b). Frequency and time domain analysis of foetal heart rate variability with traditional indexes: a critical survey. Comput. Math. Method Med. 2016:9585431. 10.1155/2016/9585431 PubMed DOI PMC
Sato N., Hoshiai T., Ito T., Owada K., Chisaka H., Aoyagi A., et al. (2011). Successful detection of the fetal electrocardiogram waveform changes during various states of singletons. Tohoku J. Exp. Med. 225, 89–94. 10.1620/tjem.225.89 PubMed DOI
Signorini M. G., Magenes G. (2014). Reliable nonlinear indices for fetal heart rate variability signal analysis, in Proceedings of the 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO) (Trento: IEEE Press; ), 213–214.
Spilka J., Chudacek V., Bursa M. (2012). Stability of variability features computed from fetal heart rate with artificially infused missing data. Comput. Cardiol. 39:917.
Taralunga D., Ungureanu M. G., Gussi I., Strungaru R., Wolf W. (2014). Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. Comput. Math. Method. Med. 2014:239060. 10.1155/2014/239060 PubMed DOI PMC
Taralunga D., Wolf W., Strungaru R., Gussi I., Dutescu C., Ungureanu M. G. (2009). Interference cancellation for extraction of the transabdominal fetal ECG, in Proceedings of the World Congress on Medical Physics and Biomedical Engineering; 2009, eds Dossel O., Schlegel W. C. (Munich: IFMBE Proceedings; ), 1253–1256.
Ungureanu G. M., Bergmans J. W., Oei S. G., Strungaru R. (2007). Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique. Biomed. Tech. 52, 56–60. 10.1515/BMT.2007.011 PubMed DOI
Ungureanu G. M., Bergmans J. W., Oei S. G., Ungureanu A., Wolf W. (2009). Comparison and evaluation of existing methods for the extraction of low amplitude electrocardiographic signals: a possible approach to transabdominal fetal ECG. Biomed. Tech. 54, 66–75. 10.1515/BMT.2009.008 PubMed DOI
van Geijn H. P. (1980). Analysis of heart rate and beat-to-beat variability: interval difference index. Am. J Obstet. Gynecol. 138, 2252. 10.1016/0002-9378(80)90242-2 PubMed DOI
Voicu I., Girault J. M., Roussel C., Decock A., Kouame D. (2010). Robust estimation of fetal heart rate from US Doppler signals. Physcs. Proc. 3, 691–699. 10.1016/j.phpro.2010.01.087 DOI
Voicu I., Menigot S., Kouame D., Girault J. M. (2014). New estimators and guidelines for better use of fetal heart rate estimators with doppler ultrasound devices. Comput. Math. Method Med. 2014:784862. 10.1155/2014/784862 PubMed DOI PMC
Vullings R., Peters C. H., Hermans M. J., Wijn P. F., Oei S. G., Bergmans J. W. (2010). A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings. Physiol. Meas. 31, 935–951. 10.1088/0967-3334/31/7/005 PubMed DOI
Wrobel J., Horoba K., Pander T., Jezewski J., Czabanski R. (2013). Improving the fetal heart rate signal interpretation by application of myriad filtering. Biocybern. Biomed. Eng. 33, 211–221. 10.1016/j.bbe.2013.09.004 DOI
Wrobel J., Jezewski J., Horoba K. (2008). Coping with limitation of bedside measurement instrumentation for reliable assessment of fetal heart rate variability, in Proceedings of the Information Technologies In Biomedicine Conference, Vol. 47, eds Pietka E., Kawa J. (Kamien Slaski: Springer Verlag; Advances in Intelligent and Soft Computing; ), 307–314.
Wrobel J., Jezewski J., Horoba K., Pawlak A., Czabanski R., Jezewski M., et al. (2015a). Medical cyber-physical system for home telecare of high-risk pregnancy – design challenges and requirements. J. Med. Imag. Health. Inform. 5, 1295–1301. 10.1166/jmihi.2015.1532 DOI
Wrobel J., Matonia A., Horoba K., Jezewski J., Czabanski R., Pawlak A., et al. (2015b). Pregnancy telemonitoring with smart control of algorithms for signal analysis. J. Med. Imag. Health. In. 5, 1302–1310. 10.1166/jmihi.2015.1533 DOI
Wrobel J., Roj D., Jezewski J., Horoba K., Kupka T., Jezewski M. (2015c). Evaluation of the robustness of fetal heart rate variability measures to low signal quality. J Med. Imag. Health. In. 5, 1311–1318. 10.1166/jmihi.2015.1534 DOI
Nature inspired method for noninvasive fetal ECG extraction
A New Approach for Testing Fetal Heart Rate Monitors
New Method for Beat-to-Beat Fetal Heart Rate Measurement Using Doppler Ultrasound Signal
Non-Adaptive Methods for Fetal ECG Signal Processing: A Review and Appraisal