Detection of Atrial Fibrillation Episodes in Long-Term Heart Rhythm Signals Using a Support Vector Machine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2017/27/B/ST6/01989
Narodowe Centrum Nauki
STRATEGMED2/269343/18/ NCBR/2016
Narodowe Centrum Badań i Rozwoju
PubMed
32019220
PubMed Central
PMC7038413
DOI
10.3390/s20030765
PII: s20030765
Knihovny.cz E-zdroje
- Klíčová slova
- AF detection, HRV features, atrial fibrillation (AF), heart rate variability (HRV), support vector machine (SVM),
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- diagnóza počítačová MeSH
- elektrokardiografie metody MeSH
- fibrilace síní diagnóza patofyziologie MeSH
- lidé MeSH
- počítačové zpracování signálu MeSH
- srdeční frekvence fyziologie MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.
Zobrazit více v PubMed
Lau J.K., Lowres N., Neubeck L., Brieger D.B., Sy R.W., Galloway C.D., Albert D.E., Freedman S.B. iPhone ECG application for community screening to detect silent atrial fibrillation: A novel technology to prevent stroke. Int. J. Cardiol. 2013;165:193–194. doi: 10.1016/j.ijcard.2013.01.220. PubMed DOI
Grond M., Jauss M., Hamann G., Stark E., Veltkamp R., Nabavi D., Horn M., Weimar C., Köhrmann M., Wachter R., et al. Improved Detection of Silent Atrial Fibrillation Using 72-Hour Holter ECG in Patients With Ischemic Stroke: A Prospective Multicenter Cohort Study. Stroke. 2013;44:3357–3364. doi: 10.1161/STROKEAHA.113.001884. PubMed DOI
Camm A.J. Atrial Fibrillation and Risk. Clin. Cardiol. 2012;35:S1–S2. doi: 10.1002/clc.21961. PubMed DOI PMC
Moody G. A new method for detecting atrial fibrillation using RR intervals. Comput. Cardiol. 1983:227–230.
Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215–e220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI
The MIT-BIH Atrial Fibrillation Database–PhysioNet. [(accessed on 20 May 2018)]; Available online: https://physionet.org/physiobank/database/afdb/
Fitzmaurice D.A., Hobbs F.R., Jowett S., Mant J., Murray E.T., Holder R., Raftery J.P., Bryan S., Davies M., Lip G.Y. Screening versus routine practice in detection of atrial fibrillation in patients aged 65 or over: Cluster randomised controlled trial. BMJ. 2007;335:383. doi: 10.1136/bmj.39280.660567.55. PubMed DOI PMC
Rawenwaaij-Arts C., Kallee L., Hopman J. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiologic interpretation, and clinical use. Circulation 1996; 93: 1043–1065. Intern. Med. 1993;118:436–447. PubMed
Desteghe L., Raymaekers Z., Lutin M., Vijgen J., Dilling-Boer D., Koopman P., Schurmans J., Vanduynhoven P., Dendale P., Heidbuchel H. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Ep Europace. 2016;19:29–39. PubMed
Haberman Z.C., Jahn R.T., Bose R., Tun H., Shinbane J.S., Doshi R.N., Chang P.M., Saxon L.A. Wireless Smartphone ECG Enables Large-Scale Screening in Diverse Populations. J. Cardiovasc. Electrophysiol. 2015;26:520–526. doi: 10.1111/jce.12634. PubMed DOI
Lee J., Reyes B.A., McManus D.D., Maitas O., Chon K.H. Atrial fibrillation detection using an iPhone 4S. IEEE Trans. Biomed. Eng. 2012;60:203–206. doi: 10.1109/TBME.2012.2208112. PubMed DOI
Vaid J., Poh M.Z., Saleh A., Kalantarian S., Poh Y.K.C., Rafael A., Ruskin J. Diagnostic accuracy of a novel mobile application (Cardiio Rhythm) for detecting atrial fibrillation. J. American Coll. Cardiol. 2015;65:A361. doi: 10.1016/S0735-1097(15)60361-8. DOI
Glotzer T.V., Hellkamp A.S., Zimmerman J., Sweeney M.O., Yee R., Marinchak R., Cook J., Paraschos A., Love J., Radoslavich G., et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST) Circulation. 2003;107:1614–1619. doi: 10.1161/01.CIR.0000057981.70380.45. PubMed DOI
Hindricks G., Pokushalov E., Urban L., Táborský M., Kuck K.-H., Lebedev D., Rieger G., Pürerfellner H., on behalf of the XPECT Trial Investigators Performance of a New Leadless Implantable Cardiac Monitor in Detecting and Quantifying Atrial Fibrillation Results of the XPECT Trial. Circ. Arrhythmia Electrophysiol. 2010;3:141–147. doi: 10.1161/CIRCEP.109.877852. PubMed DOI
Lake D.E., Moorman J.R. Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Circ. Physiol. 2011;300:H319–H325. doi: 10.1152/ajpheart.00561.2010. PubMed DOI
Babaeizadeh S., Gregg R.E., Helfenbein E.D., Lindauer J.M., Zhou S.H. Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiol. 2009;42:522–526. doi: 10.1016/j.jelectrocard.2009.06.006. PubMed DOI
Christov G.B.I. Automatic detection of atrial fibrillation and flutter by wave rectification method. J. Med. Eng. Technol. 2001;25:217–221. doi: 10.1080/03091900110065942. PubMed DOI
Christov I., Bortolan G., Daskalov I. Sequential analysis for automatic detection of atrial fibrillation and flutter. Comput. Cardiol. 2001;28:293–296. PubMed
Hindricks G., Piorkowski C. Atrial fibrillation monitoring: mathematics meets real life. Circulatory. 2012;126:791–802. doi: 10.1161/CIRCULATIONAHA.112.124735. PubMed DOI
Hargittai S. Is it possible to detect atrial fibrillation by simply using RR intervals? Comput. Cardiol. 2014;41:897–900.
Slocum J., Sahakian A., Swiryn S. Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. J. Electrocardiol. 1992;25:1–8. doi: 10.1016/0022-0736(92)90123-H. PubMed DOI
Bonomi A., Schipper F., Eerikainen L., Margarito J., Aarts R., Babaeizadeh S., De Morree H., Dekker L. Atrial Fibrillation Detection Using Photo:plethysmography and Acceleration Data at the Wrist; Proceedings of the 2016 Computing in Cardiology Conference (CinC); Vancouver, BC, Canada. 11–14 September 2016; pp. 081–339.
Lu S., Zhao H., Ju K., Shin K., Lee M., Shelley K., Chon K.H. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J. Clin. Monit. Comput. 2008;22:23–29. doi: 10.1007/s10877-007-9103-y. PubMed DOI
Tamura T., Maeda Y., Sekine M., Yoshida M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics. 2014;3:282–302. doi: 10.3390/electronics3020282. DOI
Hurnanen T., Lehtonen E., Tadi M.J., Kuusela T., Kiviniemi T., Saraste A., Vasankari T., Airaksinen J., Koivisto T., Pankaala M. Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms. IEEE J. Biomed. Heal. Inform. 2017;21:1233–1241. doi: 10.1109/JBHI.2016.2621887. PubMed DOI
Wrobel J., Jezewski J., Horoba K., Pawlak A., Czabanski R., Jezewski M., Porwik P. Medical Cyber-Physical System for Home Telecare of High-Risk Pregnancy: Design Challenges and Requirements. J. Med. Imaging Heal. Inform. 2015;5:1295–1301. doi: 10.1166/jmihi.2015.1532. DOI
Jezewski J., Pawlak A., Horoba K., Wrobel J., Czabanski R., Jezewski M. Selected design issues of the medical cyber-physical system for telemonitoring pregnancy at home. Microprocess. Microsyst. 2016;46:35–43. doi: 10.1016/j.micpro.2016.07.005. DOI
Roj D., Matonia A., Sobotnicka E., Wrobel J. Hardware design issues and functional requirements for smart wristband monitor of silent atrial fibrillation; Proceedings of the 2017 MIXDES—24th International Conference “Mixed Design of Integrated Circuits and Systems”; Bydgoszcz, Poland. 22–24 June 2017; pp. 596–600.
Logan B., Healey J. Robust detection of atrial fibrillation for a long term telemonitoring system. Comput. Cardiol. 2005;32:619–622.
Islam S., Ammour N., Alajlan N., Aboalsamh H. Rhythm-based heartbeat duration normalization for atrial fibrillation detection. Comput. Boil. Med. 2016;72:160–169. doi: 10.1016/j.compbiomed.2016.03.015. PubMed DOI
Ghodrati A., Murray B., Marinello S. RR interval analysis for detection of Atrial Fibrillation in ECG monitors; Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Vancouver, BC, Canada. 20–24 August 2008; pp. 601–604. PubMed
Kennedy A., Finlay D.D., Guldenring D., Bond R.R., Moran K., McLaughlin J. Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification. J. Electrocardiol. 2016;49:871–876. doi: 10.1016/j.jelectrocard.2016.07.033. PubMed DOI
Tateno K., Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Med. Boil. Eng. 2001;39:664–671. doi: 10.1007/BF02345439. PubMed DOI
Petrucci E., Balian V., Filippini G., Mainardi L. Atrial fibrillation detection algorithms for very long term ECG monitoring. Comput. Cardiol. 2005;32:623–626.
Lian J., Wang L., Muessig D. A Simple Method to Detect Atrial Fibrillation Using RR Intervals. Am. J. Cardiol. 2011;107:1494–1497. doi: 10.1016/j.amjcard.2011.01.028. PubMed DOI
Zhou X., Ding H., Ung B., Pickwell-MacPherson E., Zhang Y. Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Biomed. Eng. Online. 2014;13:18. doi: 10.1186/1475-925X-13-18. PubMed DOI PMC
Cui X., Chang E., Yang W.-H., Jiang B.C., Yang A.C., Peng C.-K. Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach. Entropy. 2017;19:677. doi: 10.3390/e19120677. DOI
Dash S., Chon K.H., Lu S., Raeder E.A. Automatic Real Time Detection of Atrial Fibrillation. Ann. Biomed. Eng. 2009;37:1701–1709. doi: 10.1007/s10439-009-9740-z. PubMed DOI
Andersen R.S., Poulsen E.S., Puthusserypady S. A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine; Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Jeju Island, Korea. 11–15 July 2017; pp. 2039–2042. PubMed
Nuryani N., Harjito B., Yahya I., Lestari A. Atrial fibrillation detection using support vector machine; Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT & IMECE); Surakarta, Indonesia. 4–5 November 2015; pp. 215–218.
Colloca R., Johnson A.E., Mainardi L., Clifford G.D. A support vector machine approach for reliable detection of atrial fibrillation events. Comput. Cardiol. 2013:1047–1050.
Yang T.-F., Devine B., Macfarlane P.W. Artificial neural networks for the diagnosis of atrial fibrillation. Med. Boil. Eng. 1994;32:615–619. doi: 10.1007/BF02524235. PubMed DOI
Artis S.G., Mark R.G., Moody G.B. Detection of atrial fibrillation using artificial neural networks; Proceedings of the Computers in Cardiology; Venice, Italy. 23–26 September 1991; pp. 173–176.
Petrėnas A., Marozas V., Sörnmo L. Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Comput. Boil. Med. 2015;65:184–191. doi: 10.1016/j.compbiomed.2015.01.019. PubMed DOI
Andersen R.S., Peimankar A., Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst. Appl. 2019;115:465–473. doi: 10.1016/j.eswa.2018.08.011. DOI
Faust O., Shenfield A., Kareem M., San T.R., Fujita H., Acharya U.R. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals. Comput. Boil. Med. 2018;102:327–335. doi: 10.1016/j.compbiomed.2018.07.001. PubMed DOI
Wrobel J., Matonia A., Horoba K., Jezewski J., Czabanski R., Pawlak A., Porwik P. Pregnancy Telemonitoring with Smart Control of Algorithms for Signal Analysis. J. Med. Imaging Heal. Inform. 2015;5:1302–1310. doi: 10.1166/jmihi.2015.1533. DOI
Jezewski J., Horoba K., Roj D., Wrobel J., Kupka T., Matonia A. Evaluating the fetal heart rate baseline estimation algorithms by their influence on detection of clinically important patterns. Biocybern. Biomed. Eng. 2016;36:562–573. doi: 10.1016/j.bbe.2016.06.003. DOI
Wrobel J., Roj D., Jezewski J., Horoba K., Kupka T., Jezewski M. Evaluation of the Robustness of Fetal Heart Rate Variability Measures to Low Signal Quality. J. Med. Imaging Heal. Inform. 2015;5:1311–1318. doi: 10.1166/jmihi.2015.1534. DOI
Mangasarian O.L., Musicant D.R. Lagrangian support vector machines. J. Mach. Learn. Res. 2001;1:161–177.
Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995;20:273–297. doi: 10.1007/BF00994018. DOI
Roj D., Wrobel J., Matonia A., Horoba K., Henzel N. Control and signal processing software embedded in smart wristband monitor of silent atrial fibrillation; Proceedings of the 2017 MIXDES—24th International Conference “Mixed Design of Integrated Circuits and Systems”; Bydgoszcz, Poland. 22–24 June 2017; pp. 585–590.
Wrobel J., Horoba K., Matonia A., Kupka T., Henzel N., Sobotnicka E. Optimizing the Automated Detection of Atrial Fibrillation Episodes in Long-term Recording Instrumentation; Proceedings of the 2018 25th International Conference “Mixed Design of Integrated Circuits and System” (MIXDES); Gdynia, Poland. 21–23 June 2018; pp. 460–464.
Henzel N., Wrobel J., Horoba K. Atrial fibrillation episodes detection based on classification of heart rate derived features; Proceedings of the 2017 MIXDES—24th International Conference “Mixed Design of Integrated Circuits and Systems”; Bydgoszcz, Poland. 22–24 June 2017; pp. 571–576.
Wróbel J., Horoba K., Pander T., Jeżewski J., Czabański R. Improving fetal heart rate signal interpretation by application of myriad filtering. Biocybern. Biomed. Eng. 2013;33:211–221. doi: 10.1016/j.bbe.2013.09.004. DOI
Jezewski M., Wrobel J., Horoba K., Gacek A., Henzel N., Leski J. The Prediction of Fetal Outcome by Applying Neural Network for Evaluation of CTG Records. In: Kurzynski M., Puchala E., Wozniak M., Zolnierek A., editors. Computer Recognition Systems 2. Advances in Soft Computing. Volume 45. Springer; Berlin/Heidelberg, Germany: 2007. pp. 532–541.
Jezewski J., Wrobel J., Matonia A., Horoba K., Martinek R., Kupka T., Jezewski M. Is Abdominal Fetal Electrocardiography an Alternative to Doppler Ultrasound for FHR Variability Evaluation? Front. Physiol. 2017;8:305. doi: 10.3389/fphys.2017.00305. PubMed DOI PMC
Czabanski R., Jezewski M., Wrobel J., Horoba K., Jezewski J. A Neuro-Fuzzy Approach to the Classification of Fetal Cardiotocograms; IFMBE Proceedings of the 14th Nordic Baltic Conference on Biomedical Engineering and Medical Physics; Riga, Latvia. 16–20 June 2008; pp. 446–449.
Czabański R., Jeżewski J., Horoba K., Jeżewski M. Fetal state assessment using fuzzy analysis of fetal heart rate signals—Agreement with the neonatal outcome. Biocybern. Biomed. Eng. 2013;33:145–155. doi: 10.1016/j.bbe.2013.07.003. DOI
Matonia A., Jezewski J., Kupka T., Horoba K., Wrobel J., Gacek A. The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability. Med. Boil. Eng. 2006;44:393–403. doi: 10.1007/s11517-006-0054-0. PubMed DOI
Jezewski J., Matonia A., Kupka T., Roj D., Czabanski R. Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Tech./Biomed. Eng. 2012;57:383–394. doi: 10.1515/bmt-2011-0130. PubMed DOI
Jezewski M., Czabanski R., Horoba K., Leski J. Clustering with Pairs of Prototypes to Support Automated Assessment of the Fetal State. Appl. Artif. Intell. 2016;30:572–589. doi: 10.1080/08839514.2016.1193718. DOI
Vapnik V. Statistical Learning Theory. John Wiley & Sons; New York, NY, USA: 1998.
Abe S. Support Vector Machines for Pattern Classification. Springer Science and Business Media LLC; London, UK: 2010. ISBN-13: 9781849960977.
Steinwart I., Christmann A. Support Vector Machines. Springer; New York, NY, USA: 2008.
Joachims T. Learning to Classify Text Using Support Vector Machines—Methods, Theory, and Algorithms. Kluwer Academic Publishers; Norvell, CA, USA: 2002.
Suykens J., Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999;9:293–300. doi: 10.1023/A:1018628609742. DOI
Tsang I.W., Kwok J.T., Cheung P.M. Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res. 2005;6:363–392.
Czabanski R., Jezewski M., Horoba K., Jezewski J., Leski J. Fuzzy Analysis of Delivery Outcome Attributes for Improving the Automated Fetal State Assessment. Appl. Artif. Intell. 2016;30:556–571. doi: 10.1080/08839514.2016.1193717. DOI
Jezewski M., Leski J., Czabanski R. An Attempt to Optimize the Cardiotocographic Signal Feature Set for Fetal State Assessment. J. Med. Imaging Heal. Inform. 2015;5:1364–1373. doi: 10.1166/jmihi.2015.1540. DOI
Jezewski M., Leski J.M. Nonlinear Extension of the IRLS Classifier Using Clustering with Pairs of Prototypes. In: Burduk R., Jackowski K., Kurzynski M., Wozniak M., Zolnierek A., editors. Advances in Intelligent Systems and Computing. Volume 226. Springer; Cham, Switzerland: Heidelberg, Germany: New York, NY, USA: 2013. pp. 121–130.
Dubitzky W., Granzow M., Berrar D. Fundamentals of Data Mining in Genomics and Proteomics. Springer Science & Business Media; New York, NY, USA: 2007. DOI
Picard R.R., Cook R.D. Cross-validation of regression models. J. Am. Stat. Assoc. 1984;79:575–583. doi: 10.1080/01621459.1984.10478083. DOI
Huang C., Ye S., Chen H., Li D., He F., Tu Y. A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans. Biomed. Eng. 2010;58:1113–1119. doi: 10.1109/TBME.2010.2096506. PubMed DOI
Zhou X., Ding H., Wu W., Zhang Y. A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate. PLoS ONE. 2015;10:e0136544. doi: 10.1371/journal.pone.0136544. PubMed DOI PMC
Kumar M., Pachori R.B., Acharya U.R. Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform. Biocybern. Biomed. Eng. 2018;38:564–573. doi: 10.1016/j.bbe.2018.04.004. DOI