Open access intrapartum CTG database
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
24418387
PubMed Central
PMC3898997
DOI
10.1186/1471-2393-14-16
PII: 1471-2393-14-16
Knihovny.cz E-resources
- MeSH
- Apgar Score MeSH
- Databases, Factual * MeSH
- Fetal Distress diagnosis MeSH
- Adult MeSH
- Fetal Blood chemistry MeSH
- Cardiotocography * MeSH
- Hydrogen-Ion Concentration MeSH
- Humans MeSH
- Signal Processing, Computer-Assisted * MeSH
- Parturition MeSH
- Acid-Base Imbalance MeSH
- Access to Information * MeSH
- Heart Rate, Fetal * MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: Cardiotocography (CTG) is a monitoring of fetal heart rate and uterine contractions. Since 1960 it is routinely used by obstetricians to assess fetal well-being. Many attempts to introduce methods of automatic signal processing and evaluation have appeared during the last 20 years, however still no significant progress similar to that in the domain of adult heart rate variability, where open access databases are available (e.g. MIT-BIH), is visible. Based on a thorough review of the relevant publications, presented in this paper, the shortcomings of the current state are obvious. A lack of common ground for clinicians and technicians in the field hinders clinically usable progress. Our open access database of digital intrapartum cardiotocographic recordings aims to change that. DESCRIPTION: The intrapartum CTG database consists in total of 552 intrapartum recordings, which were acquired between April 2010 and August 2012 at the obstetrics ward of the University Hospital in Brno, Czech Republic. All recordings were stored in electronic form in the OB TraceVue®;system. The recordings were selected from 9164 intrapartum recordings with clinical as well as technical considerations in mind. All recordings are at most 90 minutes long and start a maximum of 90 minutes before delivery. The time relation of CTG to delivery is known as well as the length of the second stage of labor which does not exceed 30 minutes. The majority of recordings (all but 46 cesarean sections) is - on purpose - from vaginal deliveries. All recordings have available biochemical markers as well as some more general clinical features. Full description of the database and reasoning behind selection of the parameters is presented in the paper. CONCLUSION: A new open-access CTG database is introduced which should give the research community common ground for comparison of results on reasonably large database. We anticipate that after reading the paper, the reader will understand the context of the field from clinical and technical perspectives which will enable him/her to use the database and also understand its limitations.
See more in PubMed
Heintz E, Brodtkorb TH, Nelson N, Levin LA. The long-term cost-effectiveness of fetal monitoring during labour: a comparison of cardiotocography complemented with ST analysis versus cardiotocography alone. BJOG. 2008;115(13):1676–1687. doi: 10.1111/j.1471-0528.2008.01935.x. PubMed DOI PMC
Strachan BK, van Wijngaarden WJ, Sahota D, Chang A, James DK. Cardiotocography only versus cardiotocography plus PR-interval analysis in intrapartum surveillance: a randomised, multicentre trial. FECG Study Group. Lancet. 2000;355(9202):456–459. doi: 10.1016/S0140-6736(00)82012-7. PubMed DOI
d’Aloja E, Müller M, Paribello F, Demontis R, Faa A. Neonatal asphyxia and forensic medicine. J Matern Fetal Neonatal Med. 2009;22(Suppl 3):54–56. PubMed
Alfirevic Z, Devane D, Gyte GML. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev. 2006;3(3):CD006066. PubMed
Melman S, Schoorel E, Dirksen C, Anneke Kwee LS, de Boer F, Jonkers M, Mallory D, Woiski BWM, Doornbos JP, Visser H, Anjoke JM, Huisjes MMP, Delemarre FM, Kuppens SM, Robert Aardenburg IMVD, Vrouenraets FP, Lim FT, Kleiverda G, van der Salm PC, de Boer K, Sikkema MJ, Nijhuis JG, Hermens RP, Scheepers HC. SIMPLE: Implementation of recommendations from international evidence-based guidelines on caesarean sections in the Netherlands. Protocol for a controlled before and after study. Implementation Sci. 2013;8:3. doi: 10.1186/1748-5908-8-3. PubMed DOI PMC
Lotgering FK, Wallenburg HC, Schouten HJ. Interobserver and intraobserver variation in the assessment of antepartum cardiotocograms. Am J Obstet Gynecol. 1982;144(6):701–705. PubMed
FIGO. Guidelines for the use of fetal monitoring. Int J Gynecol Obstet. 1986;25:159–167.
Bernardes J, Costa-Pereira A, de Campos DA, van Geijn HP, Pereira-Leite L. Evaluation of interobserver agreement of cardiotocograms. Int J Gynaecol Obstet. 1997;57:33–37. doi: 10.1016/S0020-7292(97)02846-4. PubMed DOI
Blix E, Sviggum O, Koss KS, Oian P. Inter-observer variation in assessment of 845 labour admission tests: comparison between midwives and obstetricians in the clinical setting and two experts. BJOG. 2003;110:1–5. PubMed
Blackwell SC, Grobman WA, Antoniewicz L, Hutchinson M, Gyamfi Bannerman C. Interobserver and intraobserver reliability of the NICHD 3-Tier Fetal Heart Rate Interpretation System. Am J Obstet Gynecol. 2011;205(4):378 e1–378.e5. PubMed
de Campos DA, Ugwumadu A, Banfield P, Lynch P, Amin P, Horwell D, Costa A, Santos C, Bernardes J, Rosén K. A randomised clinical trial of intrapartum fetal monitoring with computer analysis and alerts versus previously available monitoring. BMC Pregnancy Childbirth. 2010;10:71. doi: 10.1186/1471-2393-10-71. PubMed DOI PMC
Henderson Z, Ecker JL. Fetal scalp blood sampling – limited role in contemporary obstetric practice: part I. Lab Med. 2003;34(7):548–553. doi: 10.1309/M86KBYF00HDDJY9L. DOI
Henderson Z, Ecker JL. Fetal scalp blood sampling – limited role in contemporary obstetric practice: part II. Lab Med. 2003;34(8):594–600. doi: 10.1309/GR5QVQWCJHYU370W. DOI
Dildy GA, Clark SL, Loucks CA. Intrapartum fetal pulse oximetry: past, present, and future. Am J Obstet Gynecol. 1996;175:1–9. doi: 10.1016/S0002-9378(96)70242-9. PubMed DOI
Norén H, Blad S, Carlsson A, Flisberg A, Gustavsson A, Lilja H, Wennergren M, Hagberg H. STAN in clinical practice–the outcome of 2 years of regular use in the city of Gothenburg. Am J Obstet Gynecol. 2006;195:7–15. PubMed
Amer-Wåhlin I, Maršál K. ST analysis of fetal electrocardiography in labor. Semin Fetal Neonatal Med. 2011;16:29–35. doi: 10.1016/j.siny.2010.09.004. PubMed DOI
Ojala K, Vääräsmäki M, Mäkikallio K, Valkama M, Tekay A. A comparison of intrapartum automated fetal electrocardiography and conventional cardiotocography–a randomised controlled study. BJOG. 2006;113(4):419–423. doi: 10.1111/j.1471-0528.2006.00886.x. PubMed DOI
Westerhuis M, Kwee A, van Ginkel AA, Drogtrop AP, Gyselaers WJA, Visser GHA. Limitations of ST analysis in clinical practice: three cases of intrapartum metabolic acidosis. BJOG. 2007;114(10):1194–1201. doi: 10.1111/j.1471-0528.2007.01236.x. PubMed DOI
de Campos DA, Sousa P, Costa A, Bernardes J. Omniview-SisPorto®;3.5 - A central fetal monitoring station with online alerts based on computerized cardiotocogram+ST event analysis. J Perinat Med. 2008;36(3):260–264. PubMed
Guijarro-Berdiñas B, Alonso-Betanzos A. Empirical evaluation of a hybrid intelligent monitoring system using different measures of effectiveness. Artif Intell Med. 2002;24:71–96. doi: 10.1016/S0933-3657(01)00091-4. PubMed DOI
Neilson DR, Freeman RK, Mangan S. Signal ambiguity resulting in unexpected outcome with external fetal heart rate monitoring. Am J Obstet Gynecol. 2008;198(6):717–724. doi: 10.1016/j.ajog.2008.02.030. http://dx.doi.org/10.1016/j.ajog.2008.02.030. [Monica]. PubMed DOI
Chudáček V, Spilka J, Huptych M. Janků P. Automatic evaluation of intrapartum fetal heart rate recordings: a comprehensive analysis of useful features. Physiol Meas. 2011;32:1347–1360. doi: 10.1088/0967-3334/32/8/022. PubMed DOI
Spilka J, Chudáček V, Huptych M, Georgoulas G, Stylios C. Koucký M. Using nonlinear features for fetal heart rate classification. Biomed Signal Process Control. 2012;7(4):350–357. doi: 10.1016/j.bspc.2011.06.008. DOI
Dawes GS, Visser GH, Goodman JD, Redman CW. Numerical analysis of the human fetal heart rate: the quality of ultrasound records. Am J Obstet Gynecol. 1981;141:43–52. PubMed
Jezewski M, Czabański R, Wróbel J, Horoba K. Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybern Biom Eng. 2010;30(4):29–47.
Czabanski R, Jezewski J, Matonia A, Jezewski M. Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia. Expert Syst Appl. 1184;39(15):6–11860.
Ocak H. A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J Med Syst. 2013;37(2):9913. PubMed
Nielsen PV, Stigsby B, Nickelsen C, Nim J. Computer assessment of the intrapartum cardiotocogram. II. The value of compared with visual assessment. Acta Obstet Gynecol Scand. 1988;67(5):461–464. doi: 10.3109/00016348809004260. PubMed DOI
Chung TK, Mohajer MP, Yang ZJ, Chang AM, Sahota DS. The prediction of fetal acidosis at birth by computerised analysis of intrapartum cardiotocography. Br J Obstet Gynaecol. 1995;102(6):454–460. doi: 10.1111/j.1471-0528.1995.tb11317.x. PubMed DOI
Keith RD, Beckley S, Garibaldi JM, Westgate JA, Ifeachor EC, Greene KR. A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. Br J Obstet Gynaecol. 1995;102(9):688–700. doi: 10.1111/j.1471-0528.1995.tb11425.x. PubMed DOI
Bernardes J, de Campos DA, Costa-Pereira A, Pereira-Leite L, Garrido A. Objective computerized fetal heart rate analysis. Int J Gynaecol Obstet. 1998;62(2):141–147. doi: 10.1016/S0020-7292(98)00079-4. PubMed DOI
Maeda K, Utsu M, Makio A, Serizawa M, Noguchi Y, Hamada T, Mariko K, Matsumoto F. Neural network computer analysis of fetal heart rate. J Matern Fetal Investig. 1998;8(4):163–171. PubMed
Lee A, Ulbricht C, Dorffner G. Application of artificial neural networks for detection of abnormal fetal heart rate pattern: a comparison with conventional algorithms. J Obstet Gynecol. 1999;19(5):482–485. doi: 10.1080/01443619964256. PubMed DOI
Chung DY, Sim YB, Park KT, Yi SH, Shin JC, Kim SP. Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. Int J Gynaecol Obstet. 2001;73(2):109–116. doi: 10.1016/S0020-7292(01)00348-4. PubMed DOI
Strachan BK, Sahota DS, van Wijngaarden WJ, James DK, Chang AM. Computerised analysis of the fetal heart rate and relation to acidaemia at delivery. BJOG. 2001;108(8):848–852. PubMed
Siira SM, Ojala TH, Vahlberg TJ, Jalonen JO, Välimäki IA, Rosén KG, Ekholm EM. Marked fetal acidosis and specific changes in power spectrum analysis of fetal heart rate variability recorded during the last hour of labour. BJOG. 2005;112(4):418–423. doi: 10.1111/j.1471-0528.2004.00454.x. PubMed DOI
Cao H, Lake DE, Ferguson JE 2nd, Chisholm CA, Griffin MP, Moorman JR. Toward quantitative fetal heart rate monitoring. IEEE Trans Biomed Eng. 2006;53:111–118. doi: 10.1109/TBME.2005.859807. PubMed DOI
Salamalekis E, Hintipas E, Salloum I, Vasios G, Loghis C, Vitoratos N, Chrelias C, Creatsas G. Computerized analysis of fetal heart rate variability using the matching pursuit technique as an indicator of fetal hypoxia during labor. J Matern Fetal Neonatal Med. 2006;19(3):165–169. doi: 10.1080/14767050500233290. PubMed DOI
Georgoulas G, Stylios CD, Groumpos PP. Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans Biomed Eng. 2006;53(5):875–884. doi: 10.1109/TBME.2006.872814. PubMed DOI
Gonçalves H, Rocha AP, de Campos DA, Bernardes J. Linear and nonlinear fetal heart rate analysis of normal and acidemic fetuses in the minutes preceding delivery. Med Biol Eng Comput. 2006;44(10):847–855. doi: 10.1007/s11517-006-0105-6. PubMed DOI
Costa A, Ayres-de Campos D, Costa F, Santos C, Bernardes J. Prediction of neonatal acidemia by computer analysis of fetal heart rate and ST event signals. Am J Obstet Gynecol. 2009;201(5):464.e1–464.e6. PubMed
Elliott C, Warrick P, Graham E, Hamilton E. Graded classification of fetal heart rate tracings: association with neonatal metabolic acidosis and neurologic morbidity. Am J Obstet Gynecol. 2010;202(3):258.e1–258.e8. PubMed
Warrick P, Hamilton E, Precup D, Kearney R. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Trans Biom Eng. 2010;57(4):771–779. PubMed
Helgason H, Abry P, Goncalves P, Gharib C, Gaucherand P, Doret M. Adaptive multiscale complexity analysis of fetal heart rate. IEEE Trans Biomed Eng. 2011;58:2186–2193. PubMed
Georgieva A, Payne SJ, Moulden M, Redman CWG. Artificial neural networks applied to fetal monitoring in labour. Neural Comput Appl. 2013;22:85–93. doi: 10.1007/s00521-011-0743-y. DOI
Czabański R, Jezewski J, Wróbel J, Sikora J, Jezewski M. Application of fuzzy inference systems for classification of fetal heart rate tracings in relation to neonatal outcome. Ginekol Pol. 2013;84:38–43. PubMed
Callaway LK, Lust K, McIntyre HD. Pregnancy outcomes in women of very advanced maternal age. Aust N Z J Obstet Gynaecol. 2005;45:12–16. doi: 10.1111/j.1479-828X.2005.00333.x. PubMed DOI
Berglund S, Grunewald C, Pettersson H, Cnattingius S. Risk factors for asphyxia associated with substandard care during labor. Acta Obstet Gynecol Scand. 2010;89:39–48. doi: 10.3109/00016340903418751. PubMed DOI
Park MI, Hwang JH, Cha KJ, Park YS, Koh SK. Computerized analysis of fetal heart rate parameters by gestational age. Int J Gynaecol Obstet. 2001;74(2):157–164. doi: 10.1016/S0020-7292(01)00423-4. PubMed DOI
Bernardes J, Gonçalves H, Ayres-De-Campos D, Rocha A. Sex differences in linear and complex fetal heart rate dynamics of normal and acidemic fetuses in the minutes preceding delivery. J Perinatal Med. 2009;37(2):168–176. PubMed
Singh T, Sankaran S, Thilaganathan B, Bhide A. The prediction of intra-partum fetal compromise in prolonged pregnancy. J Obstet Gynaecol. 2008;28(8):779–782. doi: 10.1080/01443610802431857. PubMed DOI
Badawi N, Kurinczuk JJ, Keogh JM, Alessandri LM, O’Sullivan F, Burton PR, Pemberton PJ, Stanley FJ. Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ. 1998;317(7172):1554–1558. doi: 10.1136/bmj.317.7172.1554. PubMed DOI PMC
Rosén KG, Blad S, Larsson D, Norén H, Outram N. Assessment of the fetal bioprofile during labor by fetal ECG analysis. Expert Rev Obstet Gynecol. 2007;2(5):609–620. doi: 10.1586/17474108.2.5.609. DOI
Kro GAB, Yli BM, Rasmussen S, Norén H, Amer-Wåhlin I, Saugstad OD, Stray-Pedersen B, Rosén KG. A new tool for the validation of umbilical cord acid-base data. BJOG. 2010;117(12):1544–1552. doi: 10.1111/j.1471-0528.2010.02711.x. PubMed DOI
McIntyre S, Taitz D, Keogh J, Goldsmith S, Badawi N, Blair E. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol. 2012,. (in press) PubMed
Finster M, Wood M. The Apgar score has survived the test of time. Anesthesiology. 2005;102(4):855–857. doi: 10.1097/00000542-200504000-00022. PubMed DOI
Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215–E220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI
Yeh P, Emary K, Impey L. The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: analysis of 51,519 consecutive validated samples. BJOG. 2012;119(7):824–831. doi: 10.1111/j.1471-0528.2012.03335.x. PubMed DOI
Valentin L, Ekman G, Isberg PE, Polberger S, Maršál K. Clinical evaluation of the fetus and neonate. Relation between intra-partum cardiotocography, Apgar score, cord blood acid-base status and neonatal morbidity. Arch Gynecol Obstet. 1993;253(2):103–115. doi: 10.1007/BF02768736. PubMed DOI
Schiermeier S, von Steinburg SP, Thieme A, Reinhard J, Daumer M, Scholz M, Hatzmann W, Schneider KTM. Sensitivity and specificity of intrapartum computerised FIGO criteria for cardiotocography and fetal scalp pH during labour: multicentre, observational study. BJOG. 2008;115(12):1557–1563. doi: 10.1111/j.1471-0528.2008.01857.x. PubMed DOI
Pierrat V, Haouari N, Liska A, Thomas D, Subtil D, Truffert P. d’Etudes en Epidémiologie Périnatale G. Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy: population based study. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F257–F261. doi: 10.1136/adc.2003.047985. PubMed DOI PMC
Low JA. The current crisis in obstetrics. J Obstet Gynaecol Can. 2005;27(11):1031–1037. PubMed
Schifrin BS. The CTG and the timing and mechanism of fetal neurological injuries. Best Pract Res Clin Obstet Gynaecol. 2004;18(3):437–456. doi: 10.1016/j.bpobgyn.2004.03.001. PubMed DOI
Ingemarsson I, Herbst A, Thorngren-Jerneck K. Long term outcome after umbilical artery acidaemia at term birth: influence of gender and duration of fetal heart rate abnormalities. Br J Obstet Gynaecol. 1997;104(10):1123–1127. doi: 10.1111/j.1471-0528.1997.tb10934.x. PubMed DOI
MacLennan A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ. 1999;319(7216):1054–1059. doi: 10.1136/bmj.319.7216.1054. PubMed DOI PMC
Westerhuis M, Moons KGM, van Beek E, Bijvoet SM, Drogtrop AP, van Geijn HP, van Lith JMM, Mol BWJ, Nijhuis JG, Oei SG, Porath MM, Rijnders RJP, Schuitemaker NWE, van der Tweel I, Visser GHA, Willekes C, Kwee A. A randomised clinical trial on cardiotocography plus fetal blood sampling versus cardiotocography plus ST-analysis of the fetal electrocardiogram (STAN) for intrapartum monitoring. BMC Pregnancy Childbirth. 2007;7:13. doi: 10.1186/1471-2393-7-13. PubMed DOI PMC
Ross MG. Labor and fetal heart rate decelerations: relation to fetal metabolic acidosis. Clin Obstet Gynecol. 2011;54:74–82. doi: 10.1097/GRF.0b013e31820a106d. PubMed DOI
Fulcher B, Georgieva A, Redman C, Jones N. Highly comparative fetal heart rate analysis. Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. 2012. pp. 3135–3138. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=\&arnumber=6346629\&queryText\%3DHighly+comparative+fetal+ heart+rate+analysis. PubMed
Georgoulas G, Stylios C, Nokas G, Groumpos P. Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on Volume 3.; 2004. Classification of fetal heart rate during labour using hidden Markov models; pp. 2471–2475. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1381017\&tag=1.
Salamalekis E, Thomopoulos P, Giannaris D, Salloum I, Vasios G, Prentza A, Koutsouris D. Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks. BJOG. 2002;109(10):1137–1142. doi: 10.1111/j.1471-0528.2002.01388.x. PubMed DOI
Maharaj D. Intrapartum fetal resuscitation: a review. Internet J Gynecol Obstet. 2008;9(2):4800–4808.
Siggaard-Andersen O, Huch R. The oxygen status of fetal blood. Acta Anaesthesiol Scand Suppl. 1995;107:129–135. PubMed
Oncken C, Kranzler H, O’Malley P, Gendreau P, Campbell WA. The effect of cigarette smoking on fetal heart rate characteristics. Obstet Gynecol. 2002;99(5 Pt 1):751–755. PubMed
Hill JB, Alexander JM, Sharma SK, McIntire DD, Leveno KJ. A comparison of the effects of epidural and meperidine analgesia during labor on fetal heart rate. Obstet Gynecol. 2003;102(2):333–337. doi: 10.1016/S0029-7844(03)00567-2. PubMed DOI
Cleary-Goldman J, Negron M, Scott J, Downing RA, Camann W, Simpson L, Flood P. Prophylactic ephedrine and combined spinal epidural: maternal blood pressure and fetal heart rate patterns. Obstet Gynecol. 2005;106(3):466–472. doi: 10.1097/01.AOG.0000173797.20722.a0. PubMed DOI
Tincello D, White S, Walkinshaw S. Computerised analysis of fetal heart rate recordings in maternal type I diabetes mellitus. BJOG. 2001;108(8):853–857. PubMed
Jezewski J, Roj D, Wrobel J, Horoba K. A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed Eng Online. 2011;10(92) http://dx.doi.org/10.1186/1475-925X-10-92. PubMed DOI PMC
Cesarelli M, Romano M, Ruffo M, Bifulco P, Pasquariello G, Fratini A. PSD modifications of FHRV due to interpolation and CTG storage rate. Biomed Signal Process Control. 2011;6(3):225–230. doi: 10.1016/j.bspc.2010.10.002. DOI
Graatsma EM, Jacod BC, van Egmond LAJ, Mulder EJH, Visser GHA. Fetal electrocardiography: feasibility of long-term fetal heart rate recordings. BJOG. 2009;116(2):334–337;. doi: 10.1111/j.1471-0528.2008.01951.x. discussion 337–338. PubMed DOI
Sisco KM, Cahill AG, Stamilio DM, Macones GA. Is continuous monitoring the answer to incidentally observed fetal heart rate decelerations? J Matern Fetal Neonatal Med. 2009;22(5):405–409. doi: 10.1080/14767050802556059. PubMed DOI
Schiermeier S, Hatzmann H, Reinhard J. The value of Doppler cardiotocogram computer analysis system 70 minutes before delivery. Z Geburtshilfe Neonatol. 2008;212(5):189–193. doi: 10.1055/s-2008-1077015. PubMed DOI
Sheiner E, Hadar A, Hallak M, Katz M, Mazor M, Shoham-Vardi I. Clinical significance of fetal heart rate tracings during the second stage of labor. Obstet Gynecol. 2001;97(5 Pt 1):747–752. PubMed
Costa Santos C, Ayres de Campos D, da Costa Pereira A, Bernardes J. An interactive web site for research on fetal heart rate monitoring. Obstet Gynecol. 2000;95(2):309–311. doi: 10.1016/S0029-7844(99)00569-4. PubMed DOI
Bache K, Lichman M. UCI Machine Learning Repository. UCI Machine Learning Repository University of California, Irvine, School of Information and Computer Sciences. 23 Dec. 2013. http://archive.ics.uci.edu/ml/datasets/Cardiotocography.
Nature inspired method for noninvasive fetal ECG extraction
Investigating pH based evaluation of fetal heart rate (FHR) recordings