A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28420215
PubMed Central
PMC5426540
DOI
10.3390/s17040890
PII: s17040890
Knihovny.cz E-zdroje
- Klíčová slova
- EMI-free, Least Mean Squares (LMS) algorithm, Normalized Least Mean Square (NLMS) algorithm, adaptive system, fetal heart rate (fHR), fetal heart sounds (fHS), fetal phonocardiography (fPCG), interferometer, maternal heart rate (mHR), maternal heart sounds (mHS),
- MeSH
- algoritmy MeSH
- lidé MeSH
- počítačové zpracování signálu MeSH
- poměr signál - šum MeSH
- srdeční frekvence plodu * MeSH
- srdeční ozvy MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.
Zobrazit více v PubMed
Gabbe S.G., Niebyl J.R., Galan H.L., Jauniaux E.R.M., Simpson J.L., Driscoll D.A. Obstetrics: Normal and Problem Pregnancies. Elsevier Health Sciences; Amsterdam, The Netherlands: 2012.
Oats J., Abraham S. Llewellyn-Jones Fundamentals of Obstetrics and Gynaecology. Elsevier Health Sciences; Amsterdam, The Netherlands: 2016.
Hacker N.F., Gambone J.C., Hobel C.J. Hacker & Moore’s Essentials of Obstetrics and Gynecology. Elsevier Health Sciences; Amsterdam, The Netherlands: 2015.
Alferic Z., Devane D., Gyte G.M. Continuous Cardiotocography (CTG) as a form of Electronic Fetal Monitoring (EFM) for Fetal Assessment during Labour. The Cochrane Library; New York, NY, USA: 2013. PubMed
Anath C.V., Chauhan S.P., Chen H.Y., Dalton M.E., Vintyileos A.M. Electronic fetal monitoring in the United States: Temporal trends and adverse perinatal outcomes. Obstet. Gynecol. 2013;121:927–933. doi: 10.1097/AOG.0b013e318289510d. PubMed DOI
Ugwumadu A. Understanding cardiotocographic patterns associated with intrapartum fetal hypoxia and neurologic injury. Best Pract. Res. Clin. Obstet. Gynaecol. 2013;27:509–536. doi: 10.1016/j.bpobgyn.2013.04.002. PubMed DOI
Devane D., Lalor J.G., Daly S., Cuthbert A., Smith V. Cardiotocography versus Intermittent Auscultation of Fetal Heart on Admission to Labour Ward for Assessment of Fetal Wellbeing. The Cochrane Library; New York, NY, USA: 2012. PubMed
Grivell R.M., Alfirevic Z., Gyte G.M., Devane D. Antenatal Cardiotocography for Fetal Assessment. The Cochrane Library; New York, NY, USA: 2015. PubMed PMC
Ayres-de-Campos D., Spong C.Y., Chandraharan E. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 2015;131:13–24. doi: 10.1016/j.ijgo.2015.06.020. PubMed DOI
Visser G.H., Ayres-de-Campos D. FIGO consensus guidelines on intrapartum fetal monitoring: Adjunctive technologies. Int. J. Gynecol. Obstet. 2015;131:25–29. doi: 10.1016/j.ijgo.2015.06.021. PubMed DOI
Peters M., Crowe J., Pieri J., Quartero H.W., Hayes-Gill B., James D., Stinstra J., Shakespeare S. Monitoring the fetal heart non-invasively: A review of methods. J. Perinat. Med. 2001;29:408–416. doi: 10.1515/JPM.2001.057. PubMed DOI
Amann A., Smith D. Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine. Elsevier B.V.; Amsterdam, The Netherlands: 2013.
Reinhard J., Hayes-Gill B.R., Schiermeier S., Hatzmann W., Herrmann E., Heinrich T.M., Louwen F. Intrapartum signal quality with external fetal heart rate monitoring: A two way trial of external Doppler CTG ultrasound and the abdominal fetal electrocardiogram. Arch. Gynecol. Obstet. 2012;286:1103–1107. doi: 10.1007/s00404-012-2413-4. PubMed DOI
Rauf Z., O’Brien E., Stampalija T., Ilioniu F.P., Lavender T., Alfirevic Z. Home labour induction with retrievable prostaglandin pessary and continuous telemetric trans-abdominal fetal ECG monitoring. PLoS ONE. 2011;6:e28129. doi: 10.1371/journal.pone.0028129. PubMed DOI PMC
Nedoma J., Fajkus M., Siska P., Martinek R., Vasinek V. Non-invasive fiber optic probe encapsulated into PolyDiMethylSiloxane for measuring respiratory and heart rate of the human body. Adv. Electr. Electr. Eng. 2017;15:93–100. doi: 10.15598/aeee.v15i1.1923. DOI
Martinek R., Kahankova R., Skutova H., Koudelka P., Zidek J., Koziorek J. Adaptive Signal Processing Techniques for Extracting Abdominal Fetal Electrocardiogram; Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing; Prague, Czech Republic. 20–22 July 2016.
Martinek R., Skutova H., Kahankova R., Koudelka P., Bilik P., Koziorek J. Fetal ECG Extraction Based on Adaptive Neuro-Fuzzy Interference System; Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing; Prague, Czech Republic. 20–22 July 2016.
Adam J. The future of fetal monitoring. Rev. Obstet. Gynecol. 2012;5:132–136. PubMed PMC
Norén H., Carlsson A. Reduced prevalence of metabolic acidosis at birth: An analysis of established STAN usage in the total population of deliveries in a Swedish district hospital. Am. J. Obstet. Gynecol. 2010;202:546.e1–546.e7. doi: 10.1016/j.ajog.2009.11.033. PubMed DOI
Dziuda L. Fiber-optic sensors for monitoring patient physiological parameters: A review of applicable technics and relevance to use during MRI procedures. J. Biomech. 2015;20 doi: 10.1117/1.JBO.20.1.010901. PubMed DOI
Fajkus M., Nedoma J., Martinek R., Vasinek V., Nazeran H., Siska P. A Non-invasive Multichannel Hybrid Fiber-optic Sensor System for Vital Sign Monitoring. Sensors. 2017;17:111. doi: 10.3390/s17010111. PubMed DOI PMC
Zazula D. Application of Fibre-Optic Interferometry to Detection of Human Vital Sign. J. Laser Health Acad. 2012;2012:27–32.
Zazula D., Sprager S. Detection of the first heart sound using fibre-optic interferometric measurements and neural networks; Proceedings of the Symposium on Neural Network Applications in Electrical Engineering; Belgrade, Serbia. 20–22 September 2012; pp. 171–176.
Nedoma J., Zboril O., Fajkus M., Cubik J., Zavodny P., Novak M., Bednarek L., Martinek R., Vasinek V. Fiber optic interferometer as a security element; Proceedings of the SPIE—The International Society for Optical Engineering; Brussels, Belgium. 12–16 April 2016.
Teixeira J.G., Leite I.T., Silva S., Frazao O. Advanced fiber-optic acoustic sensors. Photonic Sens. 2014;4:198–208. doi: 10.1007/s13320-014-0148-5. DOI
Byeong H.L., Young H.K., Kwan S.P., Joo B.E., Myoung J.K., Byung S.R., Hae Y.C. Interferometric Fiber Optic Sensors. Sensors. 2012;12:2467–2486. PubMed PMC
Vaisman S., Salem S.Y., Holcberg G., Geva A.B. Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 2012;42:171–179. doi: 10.1016/j.compbiomed.2011.11.005. PubMed DOI
Kovacs F., Horváth C., Balogh A.T., Hosszú G. Fetal phonocardiography-past and future possibilities. Comput. Methods Prog. Biomed. 2011;104:19–25. doi: 10.1016/j.cmpb.2010.10.006. PubMed DOI
Cesarelli M., Ruffo M., Romano M., Bifulco P. Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Prog. Biomed. 2012;107:513–523. doi: 10.1016/j.cmpb.2011.11.008. PubMed DOI
Kovâcs F., Török M., Habermajer I. A rule-based phonocardiographic method for long-term fetal heart rate monitoring. IEEE Trans. Biomed. Eng. 2000;47:124–130. doi: 10.1109/10.817627. PubMed DOI
Nageotte M.P. Fetal heart rate monitoring. Semin. Fetal Neonatal Med. 2015;20:144–148. doi: 10.1016/j.siny.2015.02.002. PubMed DOI
Chethana K., Guru Prasad A.S., Omkar S.N., Asokan S. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities. J. Biophotonics. 2016;10 doi: 10.1002/jbio.201500268. PubMed DOI
Nishiyama M., Sonobe M., Watanabe K. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor. Biomed. Opt. Express. 2016;7:3675–3685. doi: 10.1364/BOE.7.003675. PubMed DOI PMC
Gurkan D., Starodubov D., Xiaojing Y. Monitoring of the heartbeat sounds using an optical fiber Bragg grating sensor. IEEE Sens. 2005;2005:306–309.
Yang X., Chen Z., Elvin C.S.M., Janice L.H.Y., Ng S.H., Teo J.T., Wu R. Textile Fiber Optic Microbend Sensor Used for Heartbeat and Respiration Monitoring. IEEE Sens. J. 2015;15:757–761. doi: 10.1109/JSEN.2014.2353640. DOI
Ciocchetti M., Massaroni C., Saccomandi P., Caponero M.A., Polimadei A., Formica D., Schena E. Smart textile based on fiber bragg grating sensors for respiratory monitoring: Design and preliminary trials. Biosensors. 2015;5:602–615. doi: 10.3390/bios5030602. PubMed DOI PMC
Dziuda L., Krej M., Skibniewski F.W. Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI. IEEE Sens. J. 2013;13:4986–4991. doi: 10.1109/JSEN.2013.2279160. DOI
Dziuda L., Skibniewski F.W., Krej M., Baran P.M. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J. Biomed. Opt. 2013;18:057006. doi: 10.1117/1.JBO.18.5.057006. PubMed DOI
Chen Z., Teo J.T., Ng S.H., Yim H. Smart pillow for heart rate monitoring using a fiber optic sensor. Opt. Fibers Sens. Devices Biomed. Diagn. Treat. 2011;7894:789402-1–789402-7.
Chen Z., Teo J.T., Yang X. In-bed fibre optic breathing and movement sensor for non-intrusive monitoring. Proc. SPIE. 2009:7173. doi: 10.1117/12.807924. DOI
Zhang C., Xu S., Shen Z., Zhao J., Miao C., Bai H. FBG pulse wave demodulation method based on PCF modal interference filter; Proceedings of the SPIE—The International Society for Optical Engineering; Beijing, China. 9 May 2016.
Dziuda L., Skibniewski F.W., Krej M., Lewandowski J. Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor. IEEE Trans. Biomed. Eng. 2012;59:1934–1942. doi: 10.1109/TBME.2012.2194145. PubMed DOI
Sprager S., Zazula D. Heartbeat and respiration detection from optical interferometric signals by using a multimethod approach. IEEE Trans. Biomed. Eng. 2012;59:2922–2929. doi: 10.1109/TBME.2012.2213302. PubMed DOI
Lau D., Chen Z., Teo J.T., Ng S.H., Rumpel H., Lian Y., Yang H., Kei P.L. Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI. IEEE Trans. Biomed. Eng. 2013;60:2655–2662. doi: 10.1109/TBME.2013.2262150. PubMed DOI
Tosi D., Olivero M., Perrone G. Low-cost fiber bragg grating vibroacoustic sensor for voice and heartbeat detection. Appl. Opt. 2008;47:5123–5129. doi: 10.1364/AO.47.005123. PubMed DOI
Wo J., Wang H., Sun Q., Shum P.P., Liu D. Noninvasive respiration movement sensor based on distributed Bragg reflector fiber laser with beat frequency interrogation. J. Biomed. Opt. 2014;19 doi: 10.1117/1.JBO.19.1.017003. PubMed DOI
Dziuda L., Skibniewski F.W. A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors. Biocybern. Biomed. Eng. 2014;34:101–106. doi: 10.1016/j.bbe.2014.02.001. DOI
Spillman W.B., Jr., Mayer M., Bennett J., Gong J., Meissner K.E., Davis B., Claus R.O., Muelenaer A.A., Jr., Xu X. A ’smart’ bed for non-intrusive monitoring of patient physiological factors. J. Meas. Sci. Technol. 2004;15:1614–1620. doi: 10.1088/0957-0233/15/8/032. DOI
Witt J., Narbonneau F., Schukar M., Krebber K., de Jonckheere J., Jeanne M., Kinet D., Paquet B., Depre A., D’Angelo L.T., et al. Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement. IEEE Sens. J. 2012;12:246–254. doi: 10.1109/JSEN.2011.2158416. DOI
Chen Z., Lau D., Teo J.T., Ng S.H., Yang X., Kei P.L. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 2014;19 doi: 10.1117/1.JBO.19.5.057001. PubMed DOI
Deepu C.J., Chen Z., Teo J.T., Ng S.H., Yang X., Lian Y. Smart cushion for real-time heart rate monitoring; Proceedings of the 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS); Hsinchu, Taiwan. 28–30 November 2012; pp. 53–56.
Chen Z., Teo J.T., Ng S.H., Yang X. Plastic optical fiber microbend sensor used as breathing sensor. Proc. IEEE Sens. 2012:1–4. doi: 10.1109/ICSENS.2012.6411048. PubMed DOI
Nishyama M., Miyamoto M., Watanabe K. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity. J. Biomed. Opt. 2011;16 doi: 10.1117/1.3528008. PubMed DOI
Nedoma J., Fajkus M., Bednarek L., Frnda J., Zavadil J., Vasinek V. Encapsulation of FBG sensor into the PDMS and its effect on spectral and temperature characteristics. Adv. Electr. Electron. Eng. 2016;14 doi: 10.15598/aeee.v14i4.1786. DOI
Fajkus M., Nedoma J., Siska P., Vasinek V. FBG sensor of breathing encapsulated into polydimethylsiloxane; Proceedings of SPIE—The International Society for Optical Engineering; Edinburgh, UK. 4–7 April 2016.
Nedoma J., Fajkus M., Vasinek V. Influence of PDMS encapsulation on the sensitivity and frequency range of fiber-optic interferometer; Proceedings of the SPIE—The International Society for Optical Engineering; Edinburgh, UK. 4–7 April 2016.
Sprager S., Donlagic D., Zazula D. Monitoring of basic human vital functions using optical interferometer. Proc. IEEE ICSP. 2010:1738–1741. doi: 10.1109/ICOSP.2010.5656473. DOI
Favero F.C., Villatoro J., Pruneri V. Microstructured optical fiber interferometric breathing sensor. J. Biomed. Opt. 2012;17 doi: 10.1117/1.JBO.17.3.037006. PubMed DOI
Will C., Shi K., Lurz F., Weigel R., Koelpin A. Intelligent signal processing routine for instantaneous heart rate detection using a Six-Port microwave interferometer; Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems; Bali, Indonesia. 9–12 November 2015.
Sprager S., Donlagić D., Zazula D. Estimation of heart rate, respiratory rate and motion by using optical interferometer as body sensor; Proceedings of the IASTED International Conference on Signal and Image; Crete, Greece. 22–24 June 2013; pp. 280–287.
Raj C.G., Harsha V.S., Gowthami B.S., Sunitha R. Virtual Instrumentation Based Fetal ECG Extraction. Procedia Comput. Sci. 2015;70:289–295. doi: 10.1016/j.procs.2015.10.093. DOI
Ahuja E., Shaikh F. A Novel Approach to FEG Extraction Based on Fast ICA. [(accessed on 18 April 2017)]; Available online: https://www.irjet.net/archives/V3/i4/IRJET-V3I4584.pdf.
Gao P., Chang E., Wse L. Bind separation of fetal ECG from single mixture using SVD and ICA; Proceedings of the Joint Conference of the Fourth International Conference on Information, Communications & Signal Processing; Singapore. 15–18 December 2015.
Jagannath D.J., Selvakumar A.I. Issues and research on foetal electrocardiogram signal elicitation. Biomed. Signal Proc. Control. 2014;10:224–244. doi: 10.1016/j.bspc.2013.11.001. DOI
Bacharaki E., Nandi A.K., Zarzoso V. Foetal ECG extraction using bling source separation methods; Proceedings of the 8th European Signal Processing Conference (EUSIPCO); Trieste, Italy. 10–13 September 1996.
Kumar P., Sharma S.K., Prasad S. CAD for Detection of Fetal Electrocardiogram by using Wavelets and Neuro-Fuzzy Systems. Comput. Intell. Commun. Technol. 2016;7546676:587–590.
Hassanpour H., Parsaei A. Fetal ECG Extraction Using Wavelet Transform; Proceedings of the International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce; Sydney, Australia. 28–30 November 2006.
Karvounis E.C., Papaloukas C., Fotiadis D.I., Michails L.K. Fetal heart rate extraction from composite maternal ECG using complex continuous wavelet transform. Comput. Cardiol. 2006;31:737–740.
Martinek R., Zidek J. A system for improving the diagnostic quality of fetal electrocardiogram. Przeglad Elektrotchniczny (Electr. Rev.) 2012;88:164–173.
Liu W., Principe J.C., Haykin S. Kernel Adaptive Filtering: A Comprehensive Introduction. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Sayed A.H. Fundamentals of Adaptive Filtering. John Wiley & Sons; Hoboken, NJ, USA: 2003.
Vijaykumar V.R., Vanathi P.T., Kanagasapabathy P. Modified adaptive filtering algorithm for noise cancellation in speech signals. Elektron. Elektrotech. 2015;74:17–20.
Karaboga N., Latifoglu F. Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2013;26:677–684. doi: 10.1016/j.engappai.2012.10.011. DOI
Astrom K.J., Goodwin G.C., Kumar P.R. Adaptive Control, Filtering, and Signal Processing. Volume 74 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Almasi A., Shamsollahi M.B., Senhadji L. Bayesian denoising framework of phonocardiogram based on a new dynamical model. IRBM. 2013;34:214–225. doi: 10.1016/j.irbm.2013.01.017. DOI
Almasi A., Shamsollahi M.B., Senhadji L. A dynamical model for generating synthetic phonocardiogram signals; Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston, MA, USA. 30 August–3 September 2011; pp. 5686–5689. PubMed PMC
Martinek R., Sincl A., Vanus J., Kelnar M., Bilik P., Machacek Z., Zidek J. Modelling of Fetal Hypoxic Conditions Based on Virtual Instrumentation; Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015; Villejuif (Paris-sud), France. 9–11 September 2015.
Martinek R., Kelnar M., Vojcinak P., Koudelka P., Vanus J., Bilik P., Janku P., Nazeran H., Zidek J. Virtual Simulator for The Generation of Patho-Physiological Foetal ECGs During the Prenatal Period. Electron. Lett. 2015;51:1738–1740. doi: 10.1049/el.2015.2291. DOI
Martinek R., Kelnar M., Koudelka P., Vanus J., Bilik P., Janku P., Nazeran H., Zidek J. A Novel LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator. Physiol. Meas. 2016;37:238–256. doi: 10.1088/0967-3334/37/2/238. PubMed DOI
Sameni R., Clifford G.D., Jutten C., Shamsollahi M.B. Multichannel ECG and noise modeling: Application to maternal and fetal ECG signals. EURASIP J. Appl. Signal Process. 2007;2007:84–94. doi: 10.1155/2007/43407. DOI
McSharry P.E., Clifford G.D., Tarassenko L., Smith L.A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003;50:289–294. doi: 10.1109/TBME.2003.808805. PubMed DOI
Wang W., Guo Z., Yang J., Zhang Y., Durand L.G., Loew M. Analysis of the first heart sound using the matching pursuit method. Med. Biol. Eng. Comput. 2001;39:644–648. doi: 10.1007/BF02345436. PubMed DOI
Xu J., Durand L.G., Pibarot P. Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model. IEEE Trans. Biomed. Eng. 2001;48:277–283. PubMed
Xu J., Durand L.G., Pibarot P. Nonlinear transient chirp signal modeling of the aortic and pulmonary components of the second heart sound. IEEE Trans. Biomed. Eng. 2000;47:1328–1335. PubMed
Minfen S., Fenglin S. The analysis of phonocardiographic signals based on higher-order spectra. Signal Process. 1996;1:568–571.
Sartwelle T.P. Electronic fetal monitoring: A bridge too far. J. Legal Med. 2012;33:79–313. doi: 10.1080/01947648.2012.714321. PubMed DOI
Tan B.H., Moghavvemi M. Real Time Analysis of Fetal Phonocardiography; Proceedings of the IEEE Region 10 Annual International Conference; Kuala Lumpur, Malaysia. 24–27 September 2000.
Moghavvemi M., Tan B.H., TAN S.Y. A non-invasive PC-based measurement of fetal phonocardiography. Sens. Actuators A Phys. 2003;107:96–103. doi: 10.1016/S0924-4247(03)00254-1. DOI
Varady P., Wildt L., Benyo Z., Hein A. An advanced method in fetal phonocardiography. Comput. Methods Prog. Biomed. 2003;71:283–296. doi: 10.1016/S0169-2607(02)00111-6. PubMed DOI
Tang H., Li T., Qiu T., Park Y. Fetal Heart Rate Monitoring from Phonocardiograph Signal Using Repetition Frequency of Heart Sound. J. Electr. Comput. Eng. 2016;2016 doi: 10.1155/2016/2404267. DOI
Sipka G., Szabo T., Zolei-Szenasi R., Vanya M., Jako M., Nagy T.D., Fidrich M., Bilicki V., Borbas J., Bito T., et al. Monitoring of Fetal Heart Rate via iPhone. eHealth 360∘. 2017:492–496. doi: 10.1007/978-3-319-49655-9_60. DOI
Durand L.G., Pibarot P. Digital signal processing of the phonocardiogram: Review of the most recent advancements. Crit. Rev. Biomed. Eng. 1995;23:3–4. doi: 10.1615/CritRevBiomedEng.v23.i3-4.10. PubMed DOI
Webster J.G. Medical Devices and Instrumentation. Wiley-Interscience; Hoboken, NJ, USA: 1988.
Phanphaisarn W., Roeksabutr A., Wardkein P., Koseeyaporn J., Yupapin P.P. Heart detection and diagnosis based on Ecg and EPcg relationships. Med. Devices. 2011;4 doi: 10.2147/MDER.S23324. PubMed DOI PMC
Southern E.M. Electrocardiography and phonocardiography of the foetal heart. BJOG Int. J. Obstet. Gynaecol. 1954;61:231–237. doi: 10.1111/j.1471-0528.1954.tb07472.x. PubMed DOI
Fendinger N.J. Polydimethylsiloxane (PDMS): Environmental Fate and Effects. Organosilicon Chem. Set. 2005:626–638. doi: 10.1002/9783527620777.ch103c. DOI
Todd M.D., Seaver M., Bucholtz F. Improved, operationally-passive interferometric demodulation method using 3×3 coupler. Electron. Lett. 2002;38:784–786. doi: 10.1049/el:20020569. DOI
Vinay K., Proakis J.G. Digital Signal Processing Using MATLAB: A Problem Solving Companion. Cengage Learn. 2016;4:1.
Brandstetter P., Klein L. Second Order Low-Pass and High-Pass Filter Designs using Method of Synthetic Immittance Elements. Adv. Electr. Electron. Eng. 2013;11:16–21.
Donghui Z. Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction; Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; Shanghai, China. 1–4 September 2005; pp. 1212–1215. PubMed
Shusterman V., Shah S.I., Beigel A., Anderson K.P. Enhancing the Precision of ECG Baseline Correction: Selective Filtering and Removal of Residual Error. Comput. Biomed. Res. 2000;33:144–160. doi: 10.1006/cbmr.2000.1539. PubMed DOI
Haykin S. Adaptive Filter Theory. Pearson Education India; New Delhi, India: 2008.
Vaseghi S.V. Advanced Digital Signal Processing and Noise Reduction. John Wiley & Sons; New York, NY, USA: 2009.
Sanei S., Chambers J.A. EEG Signal Processing. John Wiley & Sons; Hoboken, NJ, USA: 2013.
Uncini A. Fundamentals of Adaptive Signal Processing. Springer International Publishing AG; Cham, Switzerland: 2015.
Farhang-Boroujeny B. Adaptive Filters: Theory and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2013.
Zelniker G., Taylor F.J. Advanced Digital Signal Processing: Theory and Applications (Electrical and Computer Engineering) John Wiley & Sons: CRC Press; Boca Raton, FL, USA: 1993.
Nagel J.H. Progresses in Fetal Monitoring by Improved Data Acquisition. IEEE Eng. Med. Biol. Mag. 1984;3:9–13. doi: 10.1109/MEMB.1984.5006080. PubMed DOI
Mittra A., Choudhary N., Zadgaonkar A. Development of artificial womb foracoustical simulation of mother’s abdomen. Int. J. Biomed. Eng. Technol. 2008;1 doi: 10.1504/IJBET.2008.016964. DOI
Carvalho M.A., Bernardes L.S., Hettfleisch K., Pastro L.D.M., Vieira S.E., Saldiva S.R.D.M., Saldiva P.H.N., Francisco R.P.V. Associations of maternal personal exposure to air pollution on fetal weight and fetoplacental Doppler: A prospective cohort study. Reprod. Toxicol. 2016;62:9–17. doi: 10.1016/j.reprotox.2016.04.013. PubMed DOI
Nagel J.H. New diagnostic and technical aspects of fetal phonocardiography. Eur. J. Obstet. Gynecol. Reprod. Biol. 1986;23:295–303. doi: 10.1016/0028-2243(86)90163-2. PubMed DOI
Jezewski J., Wrobel J., Horoba K., Gacek A., Sikora J. Fetal heart rate variability: Clinical experts versus computerized system interpretation. Eng. Med. Biol. 2002;2:1617–1618.
Jezewski J., Wrobel J., Horoba K., Gacek A., Sikora J. Computerised perinatal database for retrospective qualitative assessment of cardiotocographic traces. Curr. Perspect. Healthc. Comput. 1996:187–196.
Janusz J., Wrobel J., Horoba K. Comparison of Doppler ultrasound and direct electrocardiography acquisition techniques for quantification of fetal heart rate variability. IEEE Trans. Biomed. Eng. 2006;53:855–864. PubMed
Janusz J., Matonia A., Kupka T., Roj D., Czabanski R. Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Tech./Biomed. Eng. 2012;57:383–394. PubMed
Chetlur Adithya P., Sankar R., Moreno W.A., Hart S. Trends in fetal monitoring through phonocardiography: Challenges and future directions. Biomed. Signal Process. Control. 2017;33:289–305. doi: 10.1016/j.bspc.2016.11.007. DOI
Towliat M.B., Jabbari S. Implementation of compressed sensing for fPCG signal compression: Design and performance evaluation; Proceedings of the 24th Iranian Conference Electrical Engineering (ICEE); Shiraz, Iran. 10–12 May 2016; pp. 395–399.
Bland J.M., Altman D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999;8:135–160. doi: 10.1191/096228099673819272. PubMed DOI
Roriz P., Carvalho L., Frazao O., Santos J.L., Simoes J.A. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review. J. Biol. 2014;47:1251–1261. doi: 10.1016/j.jbiomech.2014.01.054. PubMed DOI
Baldini F., Giannetti A., Mencaglia A.A., Trono C. Fiber Optic sensors for Biomedical Applications. Curr. Anal. Chem. 2008;4:378–390. doi: 10.2174/157341108785914880. DOI
Massaroni C., Saccomandi P., Schena E. Medical smart textiles based on fiber optic technology: An overview. J. Funct. Biomater. 2015;6:204–221. doi: 10.3390/jfb6020204. PubMed DOI PMC
Chourasia J., Chourasia V., Mittra A.K. Prenatal identification of CHD murmur using four segment phonocardiographic signal analysis. J. Med. Eng. Technol. 2017;41 doi: 10.1080/03091902.2016.1239277. PubMed DOI
Jimenez A., Charleston S., Miguel P., Tomas A., Roco O. Performance of the Hilbert Transform in fetal phonocaridography for cardiotacogram generation; Proceedings of the 21 St Annual Conference of IEEE BMES/EMBS; Atlanta, GA, USA. 13–16 October 1999.
Copel J.A., Pilu G., Green J., Hobbins J.C., Kleinman C.S. Fetal echocardiographic screening for congenital heart disease: The importance of the four-chamber view. Am. J. Obstet. Gynecol. 1987;157:648–655. doi: 10.1016/S0002-9378(87)80022-4. PubMed DOI
Varady P. Wavelet based adaptive denoising of phonocardiographic records; Proceedings of the 23rd Annual IEEE EMBS Conference; Istanbul, Istanbul, Turkey. 25–28 October 2001.
Kosa E., Horvath Cs., Kersner N., Kadar K., Kovacs F., Torok M., Hosszu G. Experiences with fetal phonocardiographic telemonitoring and future possibilities; Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Vancouver, BC, Canada. 20–25 August 2008. PubMed
Samieinasab M., Sameni R. Fetal phonocardiogram extraction using single channel blind source separation; Proceedings of the ICEE 2015—Proceedings of the 23rd Iranian Conference on Electrical Engineering; Sharif, Iran. 10–14 May 2015; pp. 78–83.
Balogh A., Kovacs F., Roska T. Ph.D. Thesis. Pazmany Peter Katolikus Egyetem; Budapest, Hungary: 2012. Analysis of the Heart Sounds and Murmurs of Fetuses and Preterm Infant.
Zahoriana S.A., Zuckerwar A.J., Karnjanadecha M. Dual transmission modeland related spectral content of the fetal heart sounds. Comput. Methods Prog. Biomed. 2012;8:20–27. doi: 10.1016/j.cmpb.2011.12.006. PubMed DOI
Cubik J., Kepak S., Doricak J., Vasinek V., Jaros J., Liner A., Papes M., Fajkus M. The Usability Analysis of Different Standard Single-Mode Optical Fibers and its Installation Methods for the Interferometric Measurements. Adv. Electr. Electron. Eng. 2013;11:535–542. doi: 10.15598/aeee.v11i6.885. DOI
Nedoma J., Fajkus M., Martinek R., Bednarek L., Zabka S., Hruby D., Jaros J., Vasinek V. Impact of fixing materials on the frequency range and sensitivity of the fiber-optic interferometer. Proc. SPIE. 2017 in press.
Nedoma J., Fajkus M., Martinek R., Zboril O., Bednarek L., Novak M., Witas K., Vasinek V. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations. Proc. SPIE. 2017 in press.
Kepak S., Cubik J., Doricak J., Vasinek V., Siska P., Liner A., Papes M. The arms arrangement influence on the sensitivity of Mach–Zehnder fiber optic interferometer. Proc. SPIE. 2013;8774 doi: 10.1117/12.2257060. DOI
Cubik J., Kepak S., Fajkus M., Zboril O., Nedoma J., Davidson A., Vasinek V. Fixing methods for the use of optical fibers in interferometric arrangements. Proc. SPIE. 2016;10142 doi: 10.1117/12.2017305. DOI
Nigam V., Priemer R. Online non invasive fetal sound analysis; Proceedings of the Electro/Information Technology Conference; Milwaukee, WI, USA. 26–27 August 2004.
MacDonnell J.T.E. Knowledge-based interpretation of foetal phonocardiographic signals. IEE Proc. Part F Commun. Radar Signal Proc. 1990;137:311–318. doi: 10.1049/ip-f-2.1990.0047. DOI
Kettler A., Liakos L., Haegele B., Wilke H.J. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur. Spine J. 2007;16:2186–2192. doi: 10.1007/s00586-007-0485-9. PubMed DOI PMC
Lobodzinski S.S., Laks M.M. New devices for very long-term ECG monitoring. Cardiol. J. 2012;19:210–214. doi: 10.5603/CJ.2012.0039. PubMed DOI
Lobodzinski S.S. ECG patch monitors for assessment of cardiac rhythm abnormalities. Prog. Cardiovasc. Dis. 2013;56:139–144. doi: 10.1016/j.pcad.2013.08.006. PubMed DOI
A New Approach for Testing Fetal Heart Rate Monitors
Non-Adaptive Methods for Fetal ECG Signal Processing: A Review and Appraisal