Polymer Cancerostatics Containing Cell-Penetrating Peptides: Internalization Efficacy Depends on Peptide Type and Spacer Length
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-13283S
Grantová Agentura České Republiky
19-01427S
Grantová Agentura České Republiky
16-28594A
Ministerstvo Zdravotnictví Ceské Republiky
NPU I project POLYMAT (LO1507)
Ministerstvo Školství, Mládeže a Tělovýchovy
Inter-Excellence program, project 39022/2018-1
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31936737
PubMed Central
PMC7023232
DOI
10.3390/pharmaceutics12010059
PII: pharmaceutics12010059
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA copolymers, cancerostatics, cell-penetrating peptides, delivery systems, diagnostics, polymer carriers,
- Publikační typ
- časopisecké články MeSH
Cell-penetrating peptides (CPPs) are commonly used substances enhancing the cellular uptake of various cargoes that do not easily cross the cellular membrane. CPPs can be either covalently bound directly to the cargo or they can be attached to a transporting system such as a polymer carrier together with the cargo. In this work, several CPP-polymer conjugates based on copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) with HIV-1 Tat peptide (TAT), a minimal sequence of penetratin (PEN), IRS-tag (RYIRS), and PTD4 peptide, and the two short hydrophobic peptides VPMLK and PFVYLI were prepared and characterized. Moreover, the biological efficacy of fluorescently labeled polymer carriers decorated with various CPPs was compared. The experiments revealed that the TAT-polymer conjugate and the PEN-polymer conjugate were internalized about 40 times and 15 times more efficiently than the control polymer, respectively. Incorporation of dodeca(ethylene glycol) spacer improved the cell penetration of both studied polymer-peptide conjugates compared to the corresponding spacer-free polymer conjugates, while the shorter tetra(ethylene glycol) spacer improved only the penetration of the TAT conjugate but it did not improve the penetration of the PEN conjugate. Finally, a significantly improved cytotoxic effect of the polymer conjugate containing anticancer drug pirarubicin and TAT attached via a dodeca(ethylene glycol) was observed when compared with the analogous polymer-pirarubicin conjugate without TAT.
Zobrazit více v PubMed
Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today. 2012;17:850–860. doi: 10.1016/j.drudis.2012.03.002. PubMed DOI
Goswami D., Vitorino H.A., Machini M.T., Esposito B.P. Self-assembled penetratin-deferasirox micelles as potential carriers for hydrophobic drug delivery. Biopolymers. 2015;104:712–719. doi: 10.1002/bip.22672. PubMed DOI
Silva S., Almeida A.J., Vale N. Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: A Review. Biomolecules. 2019;9:22. doi: 10.3390/biom9010022. PubMed DOI PMC
De la Fuente J.M., Berry C.C. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug. Chem. 2005;16:1176–1180. doi: 10.1021/bc050033+. PubMed DOI
Golan M., Feinshtein V., David A. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Eur. J. Pharm. Biopharm. 2016;109:103–112. doi: 10.1016/j.ejpb.2016.09.017. PubMed DOI
Ding Y., Sun D., Wang G.L., Yang H.G., Xu H.F., Chen J.H., Xie Y., Wang Z.Q. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery. Int. J. Nanomed. 2015;10:6199–6214. doi: 10.2147/IJN.S92519. PubMed DOI PMC
Etrych T., Subr V., Strohalm J., Sirova M., Rihova B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Koziolova E., Goel S., Chytil P., Janoušková O., Barnhart T.E., Cai W., Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale. 2017;9:10906–10918. doi: 10.1039/C7NR03306K. PubMed DOI PMC
Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI
Nori A., Jensen K.D., Tijerina M., Kopeckova P., Kopecek J. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug. Chem. 2003;14:44–50. doi: 10.1021/bc0255900. PubMed DOI
Nori A., Jensen K.D., Tijerina M., Kopeckova P., Kopecek J. Subcellular trafficking of HPMA copolymer-Tat conjugates in human ovarian carcinoma cells. J. Control. Release. 2003;91:53–59. doi: 10.1016/S0168-3659(03)00213-X. PubMed DOI
Kirakci K., Kubát P., Kučeráková M., Šícha V., Gbelcová H., Lovecká P., Grznárová P., Ruml T., Lang K. Water-soluble octahedral molybdenum cluster compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: Syntheses, luminescence, and in vitro studies. Inorgan. Chim. Acta. 2016;441:42–49. doi: 10.1016/j.ica.2015.10.043. DOI
Viscidi R.P., Mayur K., Lederman H.M., Frankel A.D. Inhibition of Antigen-Induced Lymphocyte Proliferation by Tat Protein from HIV-1. Science. 1989;246:1606–1608. doi: 10.1126/science.2556795. PubMed DOI
Green M., Loewenstein P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cells. 1988;55:1179–1188. doi: 10.1016/0092-8674(88)90262-0. PubMed DOI
Moede T., Leibiger B., Pour H.G., Berggren P.O., Leibiger I.B. Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. 1999;461:229–234. doi: 10.1016/S0014-5793(99)01446-5. PubMed DOI
Derossi D., Joliot A.H., Chassaing G., Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 1994;269:10444–10450. PubMed
Dong C., Lyu S.C., Krensky A.M., Clayberger C. DQ 65–79, a peptide derived from HLA class II, mimics p21 to block T cell proliferation. J. Immunol. 2003;171:5064–5070. doi: 10.4049/jimmunol.171.10.5064. PubMed DOI
Ho A., Schwarze S.R., Mermelstein S.J., Waksman G., Dowdy S.F. Synthetic protein transduction domains: Enhanced transduction potential in vitro and in vivo. Cancer Res. 2001;61:474–477. PubMed
Sawada M., Hayes P., Matsuyama S. Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nat. Cell Biol. 2003;5:352–357. doi: 10.1038/ncb955. PubMed DOI
Rhee M., Davis P. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J. Biol. Chem. 2006;281:1233–1240. doi: 10.1074/jbc.M509813200. PubMed DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterisation. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Pola R., Král V., Filippov S.K., Kaberov L., Etrych T., Sieglová I., Sedláček J., Fábry M., Pechar M. Polymer Cancerostatics Targeted by Recombinant Antibody Fragments to GD2-Positive Tumor Cells. Biomacromolecules. 2019;20:412–421. doi: 10.1021/acs.biomac.8b01616. PubMed DOI
Perrier S., Takolpuckdee P., Mars C.A. Reversible Addition−Fragmentation Chain Transfer Polymerization: End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI
Violini S., Sharma V., Prior J.L., Dyszlewski M., Piwnica-Worms D. Evidence for a Plasma Membrane-Mediated Permeability Barrier to Tat Basic Domain in Well-Differentiated Epithelial Cells: Lack of Correlation with Heparan Sulfate. Biochemistry. 2002;41:12652–12661. doi: 10.1021/bi026097e. PubMed DOI
Koziolová E., Machová D., Pola R., Janoušková O., Chytil P., Laga R., Filippov S.K., Šubr V., Etrych T., Pechar M., et al. Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. J. Mater. Chem. B. 2016;4:7620–7629. doi: 10.1039/C6TB02225A. PubMed DOI
Efthymiadis A., Briggs L.J., Jans D.A. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J. Biol. Chem. 1998;273:1623–1628. doi: 10.1074/jbc.273.3.1623. PubMed DOI
Pola R., Laga R., Ulbrich K., Sieglová I., Král V., Fábry M., Kabešová M., Kovář M., Pechar M. Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Biomacromolecules. 2013;14:881–889. doi: 10.1021/bm3019592. PubMed DOI
Pechar M., Pola R., Janoušková O., Sieglová I., Král V., Fábry M., Tomalová B., Kovář M. Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia. Macromol. Biosci. 2018;18 doi: 10.1002/mabi.201700173. PubMed DOI