Drug delivery to retinal photoreceptors

. 2019 Aug ; 24 (8) : 1637-1643. [epub] 20190313

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30877076
Odkazy

PubMed 30877076
PubMed Central PMC6715772
DOI 10.1016/j.drudis.2019.03.004
PII: S1359-6446(18)30511-7
Knihovny.cz E-zdroje

The photoreceptors of the retina are afflicted by diseases that still often lack satisfactory treatment options. Although suitable drugs might be available in some cases, the delivery of these compounds into the eye and across the blood-retinal barrier remains a significant challenge for therapy development. Here, we review the routes of drug administration to the retina and highlight different options for drug delivery to the photoreceptor cells.

Zobrazit více v PubMed

Kolb H. How the retina works. Am. Sci. 2003;91:28–35.

Chakravarthy U. The economic impact of blindness in Europe. Ophthal. Epidemiol. 2017;24:239–247. PubMed

Valdes J. Organotypic retinal explant cultures as in vitro alternative for diabetic retinopathy studies. ALTEX. 2016;33:459–464. PubMed

McGuinness M.B. Physical activity and age-related macular degeneration: a systematic literature review and meta-analysis. Am. J. Ophthalmol. 2017;180:29–38. PubMed

Kennan A. Light in retinitis pigmentosa. Trends Genet. 2005;21:103–110. PubMed

Curcio C.A. Spare the rods, save the cones in aging and age-related maculopathy. Invest. Ophthalmol. Vis. Sci. 2000;41:2015–2018. PubMed

Trifunovic D. Neuroprotective strategies for the treatment of inherited photoreceptor degeneration. Curr. Mol. Med. 2012;12:598–612. PubMed

Hogan M.J., editor. Histology of the Human Eye: an Atlas and Textbook. Saunders Company; 1971.

Vighi E. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E2997–E3006. PubMed PMC

Yeh S. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, Phase 2 study (DOGWOOD) Retina. 2018 PubMed

Ochakovski G.A. Subretinal injection for gene therapy does not cause clinically significant outer nuclear layer thinning in normal primate foveae. Invest. Ophthalmol. Vis. Sci. 2017;58:4155–4160. PubMed

Ohira A. Topical dexamethasone gamma-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol. 2015;93:610–615. PubMed

Meyer C.H. Routes for drug delivery to the eye and retina: intravitreal injections. Dev. Ophthalmol. 2016;55:63–70. PubMed

Rayess N. Incidence and clinical features of post-injection endophthalmitis according to diagnosis. Br. J. Ophthalmol. 2015;100:1058–1061. PubMed

Bhatia S. Nanoparticles types, classification, characterization, fabrication methods, and drug delivery applications. In: Bhatia S., editor. Natural Polymer Drug Delivery Systems. Springer; 2016. pp. 33–93.

Zhou X. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One. 2011;6 PubMed PMC

Farjo R. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One. 2006;1 PubMed PMC

Suen W.L., Chau Y. Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J. Control. Release. 2013;167:21–28. PubMed

Huu V.A. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J. Control. Release. 2015;200:71–77. PubMed PMC

Peeters L. Vitreous: a barrier to nonviral ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 2005;46:3553–3561. PubMed

Koo H. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33:3485–3493. PubMed

Kim H. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm. Res. 2009;26:329–337. PubMed

Loftsson T., Stefánsson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int. J. Pharm. 2017;531:413–423. PubMed

Sugrue M.F. The pharmacology of antiglaucoma drugs. Pharmacol. Ther. 1989;43:91–138. PubMed

Rajala A. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett. 2014;14:5257–5263. PubMed PMC

Wang Y. Cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics. 2016;6:1514–1527. PubMed PMC

Rodrigues G.A. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm. Res. 2018;35:245. PubMed PMC

Hughes P.M. Topical and systemic drug delivery to the posterior segments. Adv. Drug Deliv. Rev. 2005;57:2010–2032. PubMed

Johannsdottir S. Topical drug delivery to the posterior segment of the eye: dexamethasone concentrations in various eye tissues after topical administration for up to 15 days to rabbits. J. Drug Deliv. Sci. Technol. 2018;45:449–454.

Birngruber T. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,((R))/Doxil((R))—a cerebral open flow microperfusion pilot study. J. Pharm. Sci. 2014;103:1945–1948. PubMed

Maussang D. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov. Today Technol. 2016;20:59–69. PubMed

Campbell M. Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach. Expert Opin. Drug Deliv. 2010;7:859–869. PubMed

Trost A. Brain and retinal pericytes: origin, function and role. Front. Cell Neurosci. 2016;10:20. PubMed PMC

Bochot A., Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J. Control. Release. 2012;161:628–634. PubMed

Asteriti S. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles. Biochem. Biophys. Res. Commun. 2015;461:665–670. PubMed

Campbell M. Barrier modulation in drug delivery to the retina. Methods Mol. Biol. 2013;935:371–380. PubMed

Campbell M. Manipulating ocular endothelial tight junctions: applications in treatment of retinal disease pathology and ocular hypertension. Prog. Retin. Eye Res. 2018;62:120–133. PubMed

Keaney J. Autoregulated paracellular clearance of amyloid-beta across the blood–brain barrier. Sci. Adv. 2015;1 PubMed PMC

Campbell M. Systemic low-molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol. Med. 2011;3:235–245. PubMed PMC

Park C.G. Enhanced ocular efficacy of topically-delivered dorzolamide with nanostructured mucoadhesive microparticles. Int. J. Pharm. 2017;522:66–73. PubMed

Chetoni P. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm. 2016;109:214–223. PubMed

Gaafar P.M. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J. Liposome Res. 2014;24:204–215. PubMed

Fomina N. UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 2010;132:9540–9542. PubMed PMC

Apaolaza P.S. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials. 2016;90:40–49. PubMed

Puras G. A novel cationic niosome formulation for gene delivery to the retina. J. Control. Release. 2014;174:27–36. PubMed

Geng S. Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. Nanotechnology. 2014;25:275103. PubMed

Luo L. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano. 2013;7:3264–3275. PubMed PMC

Reijerkerk A. Systemic treatment with glutathione PEGylated liposomal methylprednisolone (2B3-201) improves therapeutic efficacy in a model of ocular inflammation. Invest. Ophthalmol. Vis. Sci. 2014;55:2788–2794. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...