Drug delivery to retinal photoreceptors
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
30877076
PubMed Central
PMC6715772
DOI
10.1016/j.drudis.2019.03.004
PII: S1359-6446(18)30511-7
Knihovny.cz E-zdroje
- MeSH
- fotoreceptory obratlovců účinky léků MeSH
- léčivé přípravky aplikace a dávkování MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- retina účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- léčivé přípravky MeSH
The photoreceptors of the retina are afflicted by diseases that still often lack satisfactory treatment options. Although suitable drugs might be available in some cases, the delivery of these compounds into the eye and across the blood-retinal barrier remains a significant challenge for therapy development. Here, we review the routes of drug administration to the retina and highlight different options for drug delivery to the photoreceptor cells.
BBB Medicines BV Leiden The Netherlands
Department of Life Sciences University of Modena and Reggio Emilia Italy
Faculty of Medicine University of Iceland Reykjavík Iceland
Faculty of Pharmaceutical Sciences University of Iceland Reykjavík Iceland
InoCure s r o Prague Czech Republic
Institute for Ophthalmic Research University of Tübingen Germany
Lund University Faculty of Medicine Department of Clinical Sciences Lund Ophthalmology Lund Sweden
Zobrazit více v PubMed
Kolb H. How the retina works. Am. Sci. 2003;91:28–35.
Chakravarthy U. The economic impact of blindness in Europe. Ophthal. Epidemiol. 2017;24:239–247. PubMed
Valdes J. Organotypic retinal explant cultures as in vitro alternative for diabetic retinopathy studies. ALTEX. 2016;33:459–464. PubMed
McGuinness M.B. Physical activity and age-related macular degeneration: a systematic literature review and meta-analysis. Am. J. Ophthalmol. 2017;180:29–38. PubMed
Kennan A. Light in retinitis pigmentosa. Trends Genet. 2005;21:103–110. PubMed
Curcio C.A. Spare the rods, save the cones in aging and age-related maculopathy. Invest. Ophthalmol. Vis. Sci. 2000;41:2015–2018. PubMed
Trifunovic D. Neuroprotective strategies for the treatment of inherited photoreceptor degeneration. Curr. Mol. Med. 2012;12:598–612. PubMed
Hogan M.J., editor. Histology of the Human Eye: an Atlas and Textbook. Saunders Company; 1971.
Vighi E. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E2997–E3006. PubMed PMC
Yeh S. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, Phase 2 study (DOGWOOD) Retina. 2018 PubMed
Ochakovski G.A. Subretinal injection for gene therapy does not cause clinically significant outer nuclear layer thinning in normal primate foveae. Invest. Ophthalmol. Vis. Sci. 2017;58:4155–4160. PubMed
Ohira A. Topical dexamethasone gamma-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol. 2015;93:610–615. PubMed
Meyer C.H. Routes for drug delivery to the eye and retina: intravitreal injections. Dev. Ophthalmol. 2016;55:63–70. PubMed
Rayess N. Incidence and clinical features of post-injection endophthalmitis according to diagnosis. Br. J. Ophthalmol. 2015;100:1058–1061. PubMed
Bhatia S. Nanoparticles types, classification, characterization, fabrication methods, and drug delivery applications. In: Bhatia S., editor. Natural Polymer Drug Delivery Systems. Springer; 2016. pp. 33–93.
Zhou X. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One. 2011;6 PubMed PMC
Farjo R. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One. 2006;1 PubMed PMC
Suen W.L., Chau Y. Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J. Control. Release. 2013;167:21–28. PubMed
Huu V.A. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J. Control. Release. 2015;200:71–77. PubMed PMC
Peeters L. Vitreous: a barrier to nonviral ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 2005;46:3553–3561. PubMed
Koo H. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33:3485–3493. PubMed
Kim H. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm. Res. 2009;26:329–337. PubMed
Loftsson T., Stefánsson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int. J. Pharm. 2017;531:413–423. PubMed
Sugrue M.F. The pharmacology of antiglaucoma drugs. Pharmacol. Ther. 1989;43:91–138. PubMed
Rajala A. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett. 2014;14:5257–5263. PubMed PMC
Wang Y. Cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics. 2016;6:1514–1527. PubMed PMC
Rodrigues G.A. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm. Res. 2018;35:245. PubMed PMC
Hughes P.M. Topical and systemic drug delivery to the posterior segments. Adv. Drug Deliv. Rev. 2005;57:2010–2032. PubMed
Johannsdottir S. Topical drug delivery to the posterior segment of the eye: dexamethasone concentrations in various eye tissues after topical administration for up to 15 days to rabbits. J. Drug Deliv. Sci. Technol. 2018;45:449–454.
Birngruber T. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,((R))/Doxil((R))—a cerebral open flow microperfusion pilot study. J. Pharm. Sci. 2014;103:1945–1948. PubMed
Maussang D. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov. Today Technol. 2016;20:59–69. PubMed
Campbell M. Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach. Expert Opin. Drug Deliv. 2010;7:859–869. PubMed
Trost A. Brain and retinal pericytes: origin, function and role. Front. Cell Neurosci. 2016;10:20. PubMed PMC
Bochot A., Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J. Control. Release. 2012;161:628–634. PubMed
Asteriti S. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles. Biochem. Biophys. Res. Commun. 2015;461:665–670. PubMed
Campbell M. Barrier modulation in drug delivery to the retina. Methods Mol. Biol. 2013;935:371–380. PubMed
Campbell M. Manipulating ocular endothelial tight junctions: applications in treatment of retinal disease pathology and ocular hypertension. Prog. Retin. Eye Res. 2018;62:120–133. PubMed
Keaney J. Autoregulated paracellular clearance of amyloid-beta across the blood–brain barrier. Sci. Adv. 2015;1 PubMed PMC
Campbell M. Systemic low-molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol. Med. 2011;3:235–245. PubMed PMC
Park C.G. Enhanced ocular efficacy of topically-delivered dorzolamide with nanostructured mucoadhesive microparticles. Int. J. Pharm. 2017;522:66–73. PubMed
Chetoni P. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm. 2016;109:214–223. PubMed
Gaafar P.M. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J. Liposome Res. 2014;24:204–215. PubMed
Fomina N. UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 2010;132:9540–9542. PubMed PMC
Apaolaza P.S. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials. 2016;90:40–49. PubMed
Puras G. A novel cationic niosome formulation for gene delivery to the retina. J. Control. Release. 2014;174:27–36. PubMed
Geng S. Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. Nanotechnology. 2014;25:275103. PubMed
Luo L. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano. 2013;7:3264–3275. PubMed PMC
Reijerkerk A. Systemic treatment with glutathione PEGylated liposomal methylprednisolone (2B3-201) improves therapeutic efficacy in a model of ocular inflammation. Invest. Ophthalmol. Vis. Sci. 2014;55:2788–2794. PubMed