Isolation and identification of siderophores produced by cyanobacteria

. 2018 Sep ; 63 (5) : 569-579. [epub] 20180620

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29926340

Grantová podpora
LO1509 Ministry of Education, Youth and Sports of the Czech Republic

Odkazy

PubMed 29926340
DOI 10.1007/s12223-018-0626-z
PII: 10.1007/s12223-018-0626-z
Knihovny.cz E-zdroje

Cyanobacteria are one of the most successful and oldest forms of life that are present on Earth. They are prokaryotic photoautotrophic microorganisms that colonize so diverse environments as soil, seawater, and freshwater, but also stones, plants, or extreme habitats such as snow and ice as well as hot springs. This diversity in the type of environment they live in requires a successful adaptation to completely different conditions. For this reason, cyanobacteria form a wide range of different secondary metabolites. In particular, the cyanobacteria living in both freshwater and sea produce many metabolites that have biological activity. In this review, we focus on metabolites called siderophores, which are low molecular weight chemical compounds specifically binding iron ions. They have a relatively low molecular weight and are produced by bacteria and also by fungi. The main role of siderophores is to obtain iron from the environment and to create a soluble complex available to microbial cells. Siderophores play an important role in microbial ecology; for example, in agriculture they support the growth of many plants and increase their production by increasing the availability of Fe in plants. The aim of this review is to demonstrate the modern use of physico-chemical methods for the detection of siderophores in cyanobacteria and the use of these methods for the detection and characterization of the siderophore-producing microorganisms. Using high-performance liquid chromatography-mass spectrometry (LC-MS), it is possible not only to discover new chemical structures but also to identify potential interactions between microorganisms. Based on tandem mass spectrometry (MS/MS) analyses, previous siderophore knowledge can be used to interpret MS/MS data to examine both known and new siderophores.

Zobrazit více v PubMed

Biometals. 2013 Jun;26(3):507-16 PubMed

Metallomics. 2015 May;7(5):877-84 PubMed

J Pept Sci. 1998 May;4(3):147-81 PubMed

Chemosphere. 2017 Sep;183:164-175 PubMed

Anal Biochem. 1987 Jan;160(1):47-56 PubMed

Z Naturforsch C. 2000 Sep-Oct;55(9-10):681-7 PubMed

Biochem Biophys Res Commun. 1966 Aug 12;24(3):370-5 PubMed

Trends Biochem Sci. 1998 Mar;23(3):94-7 PubMed

Nature. 2001 Sep 27;413(6854):409-13 PubMed

Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14237-14242 PubMed

Bioresour Technol. 2013 Feb;130:204-10 PubMed

Science. 1976 May 28;192(4242):900-2 PubMed

Metallomics. 2017 Jan 25;9(1):82-92 PubMed

Anal Sci. 2004 Jan;20(1):89-93 PubMed

J Environ Biol. 2002 Jul;23(3):215-24 PubMed

J Am Chem Soc. 2002 Jan 23;124(3):378-9 PubMed

J Inorg Biochem. 2007 Nov;101(11-12):1692-8 PubMed

J Bacteriol. 1982 Jul;151(1):288-94 PubMed

Science. 2004 Sep 10;305(5690):1612-5 PubMed

Ann Rev Mar Sci. 2009;1:43-63 PubMed

Environ Sci Technol. 2008 Dec 1;42(23):8675-80 PubMed

J Bacteriol. 1983 Dec;156(3):1144-50 PubMed

Front Microbiol. 2012 Mar 07;3:43 PubMed

Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10691-6 PubMed

Appl Environ Microbiol. 2005 Nov;71(11):7401-13 PubMed

Mass Spectrom Rev. 2016 Jan-Feb;35(1):35-47 PubMed

Anal Chem. 2003 Jun 1;75(11):2647-52 PubMed

Biometals. 2009 Aug;22(4):659-69 PubMed

Anal Chem. 2013 May 7;85(9):4357-62 PubMed

J Bacteriol. 1966 Mar;91(3):1070-9 PubMed

J Am Chem Soc. 2006 Feb 1;128(4):1064-5 PubMed

Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3754-9 PubMed

Curr Med Chem. 2002 Nov;9(22):1991-2003 PubMed

Nature. 1999 Aug 5;400(6744):554-7 PubMed

Microb Ecol. 2007 Jan;53(1):104-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...