Development of a multisensor biologging collar and analytical techniques to describe high-resolution spatial behavior in free-ranging terrestrial mammals
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39318532
PubMed Central
PMC11420106
DOI
10.1002/ece3.70264
PII: ECE370264
Knihovny.cz E-zdroje
- Klíčová slova
- GPS, accelerometer, behavioral classification, biologging, dead‐reckoning, machine learning, magnetic compass heading, magnetometer,
- Publikační typ
- časopisecké články MeSH
Biologging has proven to be a powerful approach to investigate diverse questions related to movement ecology across a range of spatiotemporal scales and increasingly relies on multidisciplinary expertise. However, the variety of animal-borne equipment, coupled with little consensus regarding analytical approaches to interpret large, complex data sets presents challenges and makes comparison between studies and study species difficult. Here, we present a combined hardware and analytical approach for standardizing the collection, analysis, and interpretation of multisensor biologging data. Here, we present (i) a custom-designed integrated multisensor collar (IMSC), which was field tested on 71 free-ranging wild boar (Sus scrofa) over 2 years; (ii) a machine learning behavioral classifier capable of identifying six behaviors in free-roaming boar, validated across individuals equipped with differing collar designs; and (iii) laboratory and field-based calibration and accuracy assessments of animal magnetic heading measurements derived from raw magnetometer data. The IMSC capacity and durability exceeded expectations, with a 94% collar recovery rate and a 75% cumulative data recording success rate, with a maximum logging duration of 421 days. The behavioral classifier had an overall accuracy of 85% in identifying the six behavioral classes when tested on multiple collar designs and improved to 90% when tested on data exclusively from the IMSC. Both laboratory and field tests of magnetic compass headings were in precise agreement with expectations, with overall median magnetic headings deviating from ground truth observations by 1.7° and 0°, respectively. Although multisensor equipment and sophisticated analyses are now commonplace in biologging studies, the IMSC hardware and analytical framework presented here provide a valuable tool for biologging researchers and will facilitate standardization of biologging data across studies. In addition, we highlight the potential of additional analyses available using this framework that can be adapted for use in future studies on terrestrial mammals.
Department of Biology Barry University Miami Shores Florida USA
Department of General Zoology Faculty of Biology University of Duisburg Essen Essen Germany
Department of Music Education Folkwang University of the Arts Essen Germany
Department of Psychology University of Miami Coral Gables Florida USA
Electrical and Computer Engineering Department United States Naval Academy Annapolis Maryland USA
Institute of Zoology University of Natural Resources and Life Sciences Vienna Austria
Swansea Lab for Animal Movement Biosciences College of Science Swansea University Swansea UK
Zobrazit více v PubMed
Alex Shorter, K. , Shao, Y. , Ojeda, L. , Barton, K. , Rocho‐Levine, J. , van der Hoop, J. , & Moore, M. (2017). A day in the life of a dolphin: Using bio‐logging tags for improved animal health and well‐being. Marine Mammal Science, 33(3), 785–802.
Balasso, P. , Taccioli, C. , Serva, L. , Magrin, L. , Andrighetto, I. , & Marchesini, G. (2023). Uncovering patterns in dairy cow behaviour: A deep learning approach with tri‐axial accelerometer data. Animals, 13(11), 1886. PubMed PMC
Begall, S. , Malkemper, E. P. , Červený, J. , Němec, P. , & Burda, H. (2013). Magnetic alignment in mammals and other animals. Mammalian Biology, 78, 10–20.
Bidder, O. R. , Campbell, H. A. , Gómez‐Laich, A. , Urgé, P. , Walker, J. , Cai, Y. , Gao, L. , Quintana, F. , & Wilson, R. P. (2014). Love thy neighbour: Automatic animal behavioural classification of acceleration data using the k‐nearest neighbour algorithm. PLoS One, 9(2), e88609. PubMed PMC
Bidder, O. R. , Walker, J. S. , Jones, M. W. , Holton, M. D. , Urge, P. , Scantlebury, D. M. , Marks, N. J. , Magowan, E. A. , Maguire, I. E. , & Wilson, R. P. (2015). Step by step: Reconstruction of terrestrial animal movement paths by dead‐reckoning. Movement Ecology, 3(1), 1–16. PubMed PMC
Brewster, L. R. , Ibrahim, A. K. , DeGroot, B. C. , Ostendorf, T. J. , Zhuang, H. , Chérubin, L. M. , & Ajemian, M. J. (2021). Classifying goliath grouper (Epinephelus itajara) behaviors from a novel, multi‐sensor tag. Sensors, 21(19), 6392. PubMed PMC
Cade, D. E. , Barr, K. R. , Calambokidis, J. , Friedlaender, A. S. , & Goldbogen, J. A. (2018). Determining forward speed from accelerometer jiggle in aquatic environments. Journal of Experimental Biology, 221(2), jeb170449. 10.1242/jeb.170449 PubMed DOI
Canty, A. , & Ripley, B. (2020). Boot: Bootstrap R (S‐plus) functions (1.3‐25) .
Červený, J. , Burda, H. , Ježek, M. , Kušta, T. , Husinec, V. , Nováková, P. , Hart, V. , Hartová, V. , Begall, S. , & Malkemper, E. P. (2017). Magnetic alignment in warthogs Phacochoerus africanus and wild boars sus scrofa. Mammal Review, 47(1), 1–5.
Chakravarty, P. , Maalberg, M. , Cozzi, G. , Ozgul, A. , & Aminian, K. (2019). Behavioural compass: Animal behaviour recognition using magnetometers. Movement Ecology, 7(1), 28. 10.1186/s40462-019-0172-6 PubMed DOI PMC
Chang, A. Z. , Fogarty, E. S. , Moraes, L. E. , García‐Guerra, A. , Swain, D. L. , & Trotter, M. G. (2022). Detection of rumination in cattle using an accelerometer ear‐tag: A comparison of analytical methods and individual animal and generic models. Computers and Electronics in Agriculture, 192, 106595.
Cook, T. R. , Gubiani, R. , Ryan, P. G. , & Muzaffar, S. B. (2017). Group foraging in Socotra cormorants: A biologging approach to the study of a complex behavior. Ecology and Evolution, 7(7), 2025–2038. PubMed PMC
Cooke, S. J. , Hinch, S. G. , Lucas, M. C. , & Lutcavage, M. (2012). Biotelemetry and biologging. Fisheries techniques (3rd ed., pp. 819–860). American Fisheries Society.
Dentinger, J. E. , Börger, L. , Holton, M. D. , Jafari‐Marandi, R. , Norman, D. A. , Smith, B. K. , Oppenheimer, S. F. , Strickland, B. K. , Wilson, R. P. , & Street, G. M. (2022). A probabilistic framework for behavioral identification from animal‐borne accelerometers. Ecological Modelling, 464, 109818.
Dickinson, E. R. , Twining, J. P. , Wilson, R. , Stephens, P. A. , Westander, J. , Marks, N. , & Scantlebury, D. M. (2021). Limitations of using surrogates for behaviour classification of accelerometer data: Refining methods using random forest models in Caprids. Movement Ecology, 9(1), 28. PubMed PMC
Erdtmann, D. , & Keuling, O. (2020). Behavioural patterns of free roaming wild boar in a spatiotemporal context. PeerJ, 8, e10409. 10.7717/peerj.10409 PubMed DOI PMC
Fannjiang, C. , Mooney, T. A. , Cones, S. , Mann, D. , Shorter, K. A. , & Katija, K. (2019). Augmenting biologging with supervised machine learning to study in situ behavior of the medusa Chrysaora fuscescens . Journal of Experimental Biology, 222(16), jeb207654. PubMed PMC
Gunner, R. M. , Holton, M. D. , Scantlebury, M. D. , van Schalkwyk, O. L. , English, H. M. , Williams, H. J. , Hopkins, P. , Quintana, F. , Gómez‐Laich, A. , Börger, L. , Redcliffe, J. , Yoda, K. , Yamamoto, T. , Ferreira, S. , Govender, D. , Viljoen, P. , Bruns, A. , Bell, S. H. , Marks, N. J. , … Wilson, R. P. (2021). Dead‐reckoning animal movements in R: A reappraisal using gundog tracks. Animal Biotelemetry, 9(1), 23. 10.1186/s40317-021-00245-z DOI
Gunner, R. M. , Wilson, R. P. , Holton, M. D. , Scott, R. , Hopkins, P. , & Duarte, C. M. (2020). A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis. Ecology and Evolution, 10(14), 7872–7886. PubMed PMC
Gutzler, B. C. , & Watson, W. H., III . (2022). Measurements of American lobster heart rate and movements in the wild using a low‐cost open source datalogger. Marine Biology, 169(4), 52.
Hastie, T. , Tibshirani, R. , & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (Vol. 2). Springer.
Hebblewhite, M. , & Haydon, D. T. (2010). Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1550), 2303–2312. PubMed PMC
Holton, M. D. , Wilson, R. P. , Teilmann, J. , & Siebert, U. (2021). Animal tag technology keeps coming of age: An engineering perspective. Philosophical Transactions of the Royal Society B, 376(1831), 20200229. PubMed PMC
Jolles, J. W. (2021). Broad‐scale applications of the Raspberry Pi: A review and guide for biologists. Methods in Ecology and Evolution, 12(9), 1562–1579.
Kassambara, A. (2020). Ggpubr: ‘ggplot2’ based publication ready plots . R package version 0.4.0.
Katzner, T. E. , & Arlettaz, R. (2020). Evaluating contributions of recent tracking‐based animal movement ecology to conservation management. Frontiers in Ecology and Evolution, 7, 519.
Kays, R. , Crofoot, M. C. , Jetz, W. , & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348(6240), aaa2478. PubMed
Kays, R. , Davidson, S. C. , Berger, M. , Bohrer, G. , Fiedler, W. , Flack, A. , Hirt, J. , Hahn, C. , Gauggel, D. , & Russell, B. (2022). The Movebank system for studying global animal movement and demography. Methods in Ecology and Evolution, 13(2), 419–431.
Kenward, R. E. (2000). A manual for wildlife radio tagging. Academic Press.
Kirschvink, J. L. (1992). Uniform magnetic fields and double wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics, 13(5), 401–411. 10.1002/bem.2250130507 PubMed DOI
Landler, L. , Ruxton, G. D. , & Malkemper, E. P. (2022). The multivariate analysis of variance as a powerful approach for circular data. Movement Ecology, 10(1), 21. 10.1186/s40462-022-00323-8 PubMed DOI PMC
Logan, R. K. , Luongo, S. M. , Vaudo, J. J. , Wetherbee, B. M. , & Shivji, M. S. (2023). Hunting behavior of a solitary sailfish Istiophorus platypterus and estimated energy gain after prey capture. Scientific Reports, 13(1), 1484. 10.1038/s41598-023-28748-0 PubMed DOI PMC
Martín López, L. M. , Aguilar de Soto, N. , Miller, P. , & Johnson, M. (2016). Tracking the kinematics of caudal‐oscillatory swimming: A comparison of two on‐animal sensing methods. Journal of Experimental Biology, 219(14), 2103–2109. PubMed
Matsumura, M. , Watanabe, Y. Y. , Robinson, P. W. , Miller, P. J. O. , Costa, D. P. , & Miyazaki, N. (2011). Underwater and surface behavior of homing juvenile northern elephant seals. Journal of Experimental Biology, 214(4), 629–636. 10.1242/jeb.048827 PubMed DOI
Noda, T. , Kawabata, Y. , Arai, N. , Mitamura, H. , & Watanabe, S. (2014). Animal‐mounted gyroscope/accelerometer/magnetometer: In situ measurement of the movement performance of fast‐start behaviour in fish. Journal of Experimental Marine Biology and Ecology, 451, 55–68.
Painter, M. S. , Blanco, J. A. , Malkemper, E. P. , Anderson, C. , Sweeney, D. C. , Hewgley, C. W. , Červený, J. , Hart, V. , Topinka, V. , & Belotti, E. (2016). Use of bio‐loggers to characterize red fox behavior with implications for studies of magnetic alignment responses in free‐roaming animals. Animal Biotelemetry, 4(1), 1–19.
Percie du Sert, N. , Hurst, V. , Ahluwalia, A. , Alam, S. , Avey, M. T. , Baker, M. , Browne, W. J. , Clark, A. , Cuthill, I. C. , Dirnagl, U. , Emerson, M. , Garner, P. , Holgate, S. T. , Howells, D. W. , Karp, N. A. , Lazic, S. E. , Lidster, K. , MacCallum, C. J. , Macleod, M. , … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. 10.1371/journal.pbio.3000410 PubMed DOI PMC
Portugal, S. J. , & White, C. R. (2018). Miniaturization of biologgers is not alleviating the 5% rule. Methods in Ecology and Evolution, 9(7), 1662–1666.
Rattenborg, N. C. , Voirin, B. , Cruz, S. M. , Tisdale, R. , Dell'Omo, G. , Lipp, H.‐P. , Wikelski, M. , & Vyssotski, A. L. (2016). Evidence that birds sleep in mid‐flight. Nature Communications, 7(1), 12468. PubMed PMC
Ropert‐Coudert, Y. , & Wilson, R. P. (2005). Trends and perspectives in animal‐attached remote sensing. Frontiers in Ecology and the Environment, 3(8), 437–444.
Rutz, C. , & Hays, G. C. (2009). New frontiers in biologging science (Vol. 5, pp. 289–292). The Royal Society London. PubMed PMC
Sakai, K. , Oishi, K. , Miwa, M. , Kumagai, H. , & Hirooka, H. (2019). Behavior classification of goats using 9‐axis multi sensors: The effect of imbalanced datasets on classification performance. Computers and Electronics in Agriculture, 166, 105027.
Shepard, E. L. C. , Wilson, R. P. , Quintana, F. , Laich, A. G. , Liebsch, N. , Albareda, D. A. , Halsey, L. G. , Gleiss, A. , Morgan, D. T. , & Myers, A. E. (2008). Identification of animal movement patterns using tri‐axial accelerometry. Endangered Species Research, 10, 47–60.
Studd, E. K. , Landry‐Cuerrier, M. , Menzies, A. K. , Boutin, S. , McAdam, A. G. , Lane, J. E. , & Humphries, M. M. (2019). Behavioral classification of low‐frequency acceleration and temperature data from a free‐ranging small mammal. Ecology and Evolution, 9(1), 619–630. PubMed PMC
Sur, M. , Suffredini, T. , Wessells, S. M. , Bloom, P. H. , Lanzone, M. , Blackshire, S. , Sridhar, S. , & Katzner, T. (2017). Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds. PLoS One, 12(4), e0174785. 10.1371/journal.pone.0174785 PubMed DOI PMC
Tuia, D. , Kellenberger, B. , Beery, S. , Costelloe, B. R. , Zuffi, S. , Risse, B. , Mathis, A. , Mathis, M. W. , van Langevelde, F. , & Burghardt, T. (2022). Perspectives in machine learning for wildlife conservation. Nature Communications, 13(1), 792. PubMed PMC
Vyssotski, A. L. , Serkov, A. N. , Itskov, P. M. , Dell'Omo, G. , Latanov, A. V. , Wolfer, D. P. , & Lipp, H.‐P. (2006). Miniature neurologgers for flying pigeons: Multichannel EEG and action and field potentials in combination with GPS recording. Journal of Neurophysiology, 95(2), 1263–1273. PubMed
Walker, J. S. , Jones, M. W. , Laramee, R. S. , Holton, M. D. , Shepard, E. L. C. , Williams, H. J. , Scantlebury, D. M. , Marks, N. J. , Magowan, E. A. , & Maguire, I. E. (2015). Prying into the intimate secrets of animal lives; software beyond hardware for comprehensive annotation in ‘Daily Diary’ tags. Movement Ecology, 3, 1–16. PubMed PMC
Wang, G. (2019). Machine learning for inferring animal behavior from location and movement data. Ecological Informatics, 49, 69–76. 10.1016/j.ecoinf.2018.12.002 DOI
Wild, T. A. , Wikelski, M. , Tyndel, S. , Alarcón‐Nieto, G. , Klump, B. C. , Aplin, L. M. , Meboldt, M. , & Williams, H. J. (2023). Internet on animals: Wi‐Fi‐enabled devices provide a solution for big data transmission in biologging. Methods in Ecology and Evolution, 14(1), 87–102.
Williams, H. J. , Holton, M. D. , Shepard, E. L. C. , Largey, N. , Norman, B. , Ryan, P. G. , Duriez, O. , Scantlebury, M. , Quintana, F. , Magowan, E. A. , Marks, N. J. , Alagaili, A. N. , Bennett, N. C. , & Wilson, R. P. (2017). Identification of animal movement patterns using tri‐axial magnetometry. Movement Ecology, 5(1), 6. 10.1186/s40462-017-0097-x PubMed DOI PMC
Williams, H. J. , Taylor, L. A. , Benhamou, S. , Bijleveld, A. I. , Clay, T. A. , de Grissac, S. , Demšar, U. , English, H. M. , Franconi, N. , & Gómez‐Laich, A. (2020). Optimizing the use of biologgers for movement ecology research. Journal of Animal Ecology, 89(1), 186–206. PubMed PMC
Wilmers, C. C. , Nickel, B. , Bryce, C. M. , Smith, J. A. , Wheat, R. E. , & Yovovich, V. (2015). The golden age of bio‐logging: How animal‐borne sensors are advancing the frontiers of ecology. Ecology, 96(7), 1741–1753. PubMed
Wilson, R. P. , Holton, M. , Di Virgilio, A. , Williams, H. , Shepard, E. , Lambertucci, S. , Quintana, F. , Sala, J. E. , Balaji, B. , & Lee, E. S. (2018). Give the machine a hand: A Boolean time‐based decision‐tree template for rapidly finding animal behaviours in multisensor data. Methods in Ecology and Evolution, 9(11), 2206–2215.
Wilson, R. P. , Liebsch, N. , Davies, I. M. , Quintana, F. , Weimerskirch, H. , Storch, S. , Lucke, K. , Siebert, U. , Zankl, S. , & Müller, G. (2007). All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Research Part II: Topical Studies in Oceanography, 54(3–4), 193–210.
Wilson, R. P. , Grant, W. S. , & Duffy, D. C. (1986). Recording devices on free‐ranging marine animals: Does measurement affect foraging performance? Ecology, 67(4), 1091–1093.
Wilson, R. P. , Rose, K. A. , Gunner, R. , Holton, M. D. , Marks, N. J. , Bennett, N. C. , Bell, S. H. , Twining, J. P. , Hesketh, J. , & Duarte, C. M. (2021). Animal lifestyle affects acceptable mass limits for attached tags. Proceedings of the Royal Society B, 288(1961), 20212005. PubMed PMC
Wilson, R. P. , Shepard, E. L. C. , & Liebsch, N. (2008). Prying into the intimate details of animal lives: Use of a daily diary on animals. Endangered Species Research, 4(1–2), 123–137. 10.3354/esr00064 DOI
Yoda, K. , Sato, K. , Niizuma, Y. , Kurita, M. , Bost, C.‐A. , Maho, Y. L. E. , & Naito, Y. (1999). Precise monitoring of porpoising behaviour of Adélie penguins determined using acceleration data loggers. Journal of Experimental Biology, 202(22), 3121–3126. PubMed
Yu, H. , Deng, J. , Nathan, R. , Kröschel, M. , Pekarsky, S. , Li, G. , & Klaassen, M. (2021). An evaluation of machine learning classifiers for next‐generation, continuous‐ethogram smart trackers. Movement Ecology, 9(1), 15. 10.1186/s40462-021-00245-x PubMed DOI PMC
Zhang, Z. , Zhang, H. , He, Y. , & Liu, T. (2022). A review in the automatic detection of pigs behavior with sensors. Journal of Sensors, 2022(1), 4519539. 10.1155/2022/4519539 DOI